

National Food Institute

Clinical metagenomics in urinary tract infections

Patient no. 42

Frank M. Aarestrup DTU – Food www.genomicepidemiology www.compare-europe.eu

Metagenomic sequencing directly on the samples can reduce time and improve result

FIG 2 Schematic representation of the workflow anticipated after adoption of whole-genome sequencing used either on cultured isolates or directly on the clinical samples, with an expected time scale.

Rapid whole genome sequencing for the detection and characterization of microorganisms directly from clinical samples. Hasman H, Saputra D, Sicheritz-Ponten T, Lund O, Svendsen CA, Frimodt-Møller N, Aarestrup FM. J Clin Microbiol. 2014 Jan;52(1):139-46

Rapid Whole-Genome Sequencing for Detection and Characterization of Microorganisms Directly from Clinical Samples

Henrik Hasman,^a Dhany Saputra,^b Thomas Sicheritz-Ponten,^b Ole Lund,^b Christina Aaby Svendsen,^a Niels Frimodt-Møller,^c Frank M. Aarestrup^a

National Food Institute, Technical University of Denmark, Lyngby, Denmark*; Systems Biology, Technical University of Denmark, Lyngby, Denmark^h, Hvidowre Hospital, Hvidovre, Denmark^e

from patients with suspected urinary tract infections were examined using conventional microbiology, WGS of isolated bacteria, Whole-genome sequencing (WGS) is becoming available as a routine tool for clinical microbiology. If applied directly on clinical ability of fast and reliable bioinformatic tools. This study was conducted to evaluate the applicability of WGS directly on clinical samples, this could further reduce diagnostic times and thereby improve control and treatment. A major bottleneck is the availsamples and to develop easy-to-use bioinformatic tools for the analysis of sequencing data. Thirty-five random urine samples

The study

- 35 random urinary samples
- Routine culturing
 - All isolated bacteria WGS
- Direct sequencing
 - Reads mapped to databases

Results - ID

Cultures from 19 (pure from 17)
– WGS improved identification

- Metagenomics from 23
 - Four culture negative (G. vaginalis, L. iners, Prevotella, E. coli/E. faecalis)
 - Two mixed cultures (E. coli, E. coli/E. faecalis)

Constant of the Constant of C

ATAAGGGTGTTGTCATATTTGTGATTGTCACTCAACCATGAAT ;GAGATATCTTTTCTTCGAGATTCACCCTCAGGAAATAATCCCT ACTCATTTTAATGTTGTTGAAATCCAGGATGTCCTGCTCATTAT AGAAAAGGTGATGTCGATGGTTCTGGTGAGTTATAAAAACTTT

				Aminoglycosid
gene	Sidentity	HSP/Query length	Contig	Position in contig
aac(6')- llc	100.00	582 / 582	contig_42	43624
aac(6')- Ib	99.49	587 / 606	contig_266	1559.2145
aac(6')- ly	98.40	438 / 438	contig_20	932.1369
aac(6') Ib-cr	100.00	600 / 600	contig_266	1559.2158
aph(3')- Ia	99.39	816 / 816	contig_72	123.938
aph(3')- Ic	99.51	814 / 816	contig_72	123.936
strA	100.00	529 / 804	contig_277	1529
strB	99.88	837 / 837	contig_250	42877

990

Distribution among countries 2015 69 different countres in total

	Phenotypic			
	Resistant	Susceptible		
Resistant	475	7		
Susceptible	0	2569		
99.8% concordance	Spectinomycin in <i>E. coli</i>			

Number of reads mapping to tetracycline resistant and tetracycline susceptible Enterococci and E. coli

Agreement to resistance

Number	Species	Phenotypic resistance	WGS predicted	Metagenomic predicted
10	E. coli	S	S	ESBL
21	E. coli	AMP, CIP, GEN, NAL	AMP, GEN, TET	AMP, GEN, TET
27	E. coli	S	S	TET

e

Test data

- 143 isolates from Oxford University Hospital, comprising 858 phenotypic susceptibility tests, most on beta-lactams.
- 193 isolates from Danish pig farms, comprising2,547 phenotypic susceptibility tests, coveringa broad spectrum of antibiotic classes.

Sequence quality and resistance determination

	SRST2	ResFinder	Kmer	
SE	95	94	97	
SP	96	96	97	
	Down sampled			
SE	29	17	95	
SP	98	98	97	

Metagenomic assignment metamerfinder

$$P(T < t_i) = 1 - e^{-\lambda_i t_i}$$
, $\lambda = \frac{1}{\mu_i} \land i \in (Depth; Coverage)$
Equation 2; The exponential survival function, μ : background expectation, t: measured quality

Agreement to resistance

No	Species	Phenotypic resistance	WGS predicted	Metagenomic predicted	Metamerfinder
3	E. faecalis	TET	TET	TET	E. faecalis (TET) E. coli (S) L. crispatus (ERY)
10	E. coli	S	S	ESBL	ESBL
21	E. coli	AMP, CIP, GEN, NAL	AMP, GEN, TET	AMP, GEN, TET	AMP, GEN, TET
27	E. coli	S	S	TET	TET, SUL, AMP, STR, TMP

Why a central public repository impare Besides the language and altruistic issues

- The data comparison problem
- Allowing easy transfer between levels of access including public
- Allow access to bioinformatics for the frontline and frontline data for bioinformaticians
- Allowing for constantly improving the analytic pipelines

Establishing and improving surveillance

- Rapid sharing
 - Online bioinformatic tools
 - >1,000 jobs per day
 - Facilities for rapid sharing

- Natural reservoirs
 - Major issues with individual samples

National ethical committees

The Rio Convention The Nagoya Protocol

Copenhagen according to sewage

Our vision: one system serves all

Guiding principles:

- Cross sector, cross domain, open source (not commercial)
- Interaction with the rest of the world (all inclusive)
- Data for action (actionable outputs)
- Central repository (ENA, DDJ, NCBI) (bring the tools to the data)

There can be no real-time detection & surveillance without real-time data sharing