The intestinal microbiota and the link with diseases

FIRST INTERNATIONAL CONFERENCE ON CLINICAL METAGENOMICS,
October 14, 2016, Campus Biotech, Geneva, Switzerland

S. Dusko Ehrlich,
MetaGenoPolis, INRA Jouy en Josas; King’s College, London, UK
The human intestinal microbiota is a neglected organ...

✓ 100 trillion microorganisms; more cells than the human body; up to 2 kg of mass!
✓ Interface between food and epithelium
✓ In contact with the 1st pool of immune cells and the 2nd pool of neural cells of the body

...with a major role in health & disease!
Chronic diseases potentially impacted by the gut microbiome

<table>
<thead>
<tr>
<th>Chronic Disease</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frailty in seniors</td>
<td>Van Tongeren et al., 2005</td>
</tr>
<tr>
<td>Crohn’s disease</td>
<td>Seksik et al., 2003; Sokol et al., 2006, 2008, 2009</td>
</tr>
<tr>
<td>Ulcerative colitis</td>
<td>Sokol et al., 2008; Martinez et al., 2008</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>Vaahтовuo et al., 2008; Scher et al., 2013</td>
</tr>
<tr>
<td>Obesity</td>
<td>Ley et al., 2007; Kalliomäki et al., 2008</td>
</tr>
<tr>
<td>Type 2 diabetes</td>
<td>Cani and Delzenne, 2009</td>
</tr>
<tr>
<td>Type 1 diabetes</td>
<td>Dessein et al., 2009; Wen et al., 2008</td>
</tr>
<tr>
<td>Celiac disease</td>
<td>Nadal et al., 2007; Collado et al., 2009</td>
</tr>
<tr>
<td>Allergy</td>
<td>Kirjavainen et al., 2002; Björkstén, 2009</td>
</tr>
<tr>
<td>Autism</td>
<td>Finegold et al., 2002; Paracho et al., 2005</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>Mai et al., 2007; Scanlan et al., 2008</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>Velicer et al., 2004</td>
</tr>
<tr>
<td>HIV</td>
<td>Gori et al., 2008</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>Gunnarsdottir et al. 2003</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>Wang et al. 2011</td>
</tr>
<tr>
<td>Other…</td>
<td></td>
</tr>
</tbody>
</table>
Chronic diseases increase steadily in industrialized countries

- No PREVENTION
- No CURE

Seven of the top 10 causes of death in 2010 were chronic diseases. Two of these—heart disease and cancer—accounted for nearly 48% of deaths in the US.

Bach JF, N Eng J Med 2002
Centers for Disease Control and Prevention, 2013
Prevention of chronic diseases could impact public health greatly

Prevention = Risk detection & alleviation

- Can the microbiome inform on a risk of chronic diseases?
- Can it be a target for intervention?

Assessment of the microbiome needed
How to assess the state of the neglected organ in each & every individual?

The MetaHIT approach (the EC large human microbiome project)

✓ Construct a reference gene catalog of the gut microbes – the other human genome.

✓ Develop a quantitative metagenomic pipeline for gene profiling – the other genome of an individual.
Quantitative metagenomics

Sample collection ➔ Sequencing ➔ Reference construction ➔ Gene profiling ➔ Bioinformatics & statistics analyses

Stool sample ➔ Total DNA ➔ NGS ➔ 20 million sequences ➔ Mapping to gene catalog ➔ Gene counts

Known genomes ➔ Reference Gene Catalog ➔ Preprocessing / normalization and dimension reduction ➔ Identify relevant microbial players ➔ Relate to human data ➔ Build and test prediction models

Standardization is critical
http://www.microbiome-standards.org/#SOPS

The prime way to characterize a microbiome
An integrated 9.9 M genes reference catalog

March 2010
124 individuals
3.3 M genes

Rare genes are increasing
- Transient species?
- Strain differences?
Pan-metagenome

Common genes are not
They may be most clinically useful for common diseases

Individuals from MetaHIT, Chinese and HMP studies, n=1267
Sequenced reference gut genomes
Li et al. Nature Biotech, 2014
Improving microbiome description
Towards a common gut gene catalog

- Rheumatoid arthritis catalog
- Liver cirrhosis catalog
- Vegan catalog
-

Comparability of studies requires a common catalog – we should cooperate to make it!
Gene catalog clustered in MetaGenomic Units by co-abundance binning

741 large MGU (>700 Genes) correspond to bacterial species (MetaGenomic Species; 85% previously unknown)
238 high quality genomes reconstructed
6640 small MGU: phages, plasmids, virulence islands, CRISPR..

Microbiome assessment

- Faecalibacterium prausnitzii
- Ruminococcus spp
- Clostridium difficile
- Bacteroides dorei
- Escherichia coli

Quantitative metagenomics

A Powerful Microscope to Scan the neglected organ
Diagnostics
Diagnostics of liver cirrhosis by gut metagenomic species

123 patients
Liver cirrhosis diagnosis
• by biopsy in 46
• by clinical symptoms or imaging in 77

114 controls
Healthy volunteers who visited the hospital for annual physical examination

7 MGS accurately diagnose liver cirrhosis

Zhejiang University, Hangzhou, China & MGP, Jouy en Josas, France
Diagnostics of liver cirrhosis by gut metagenomic species

Accurate diagnostics irrespective of etiology & the disease status:
Viral & alcoholic, compensated & de-compensated (ascites w/wo encephalopathy) patients are diagnosed with 95% accuracy

No effect of medication:
Patients taking antivirals, beta blockers, proton pump inhibitors and those that do not are diagnosed with 95% accuracy

Diagnostics by a non-invasive method – stool analysis

Zhejiang University, Hangzhou, China & MGP, Jouy en Josas, France
Patient monitoring
Microbiome informs on the state of disease

Zhejiang University, Hangzhou, China & MGP, Jouy en Josas, France

- Each column is an individual
- Each row is a gene, 50 are displayed for each species
- Colors indicate gene abundance

Discovery cohort: n=181
Validation: n=56

MGS enriched in LC
n=28

MGS enriched in Healthy
n=38

Healthy
n=98 | LC
n=83

Healthy
n=31 | LC
N=25

MELD
CTP

p<1e-5
p<3e-4

LC MGS load
Low High
Low High
Massive microbiome changes in cirrhosis

Low gene richness (p<10 e-10)

Invasion of the gut by bacterial species rare in health: up to 40% of abundance!

“The patients with higher MELD scores presented poorer dental health than those with lower scores”. Helenius-Hietala et al. Transplant International 25, 158-165 (2012)

Zhejiang University, Hangzhou, China & MGP, Jouy en Josas, France
Current concepts in the assessment and treatment of Hepatic Encephalopathy

Pathophysiology – impacted by the microbiome?
- The ammonia theory
- GABA/benzodiazepine receptor complex theory
- Manganese theory

Treatments – impact the microbiome?
- Oral laxatives
- Enemas
- Antibiotics

Novel treatments to improve the microbiome more permanently - FMT?

Hepatology

A case study: “the dramatic clinical improvements following serial FMT are very encouraging”
Advent of less healthy/toxic microbiome may be triggered by many factors

Loss of barrier scenario in liver cirrhosis

- **Trigger:**
 - Virus infection, alcohol, obesity, autoimmunity...

- **Barrier fall:**
 - Impaired bile production

- **Result:**
 - Invasion of the gut by oral bacteria and food-borne pathogens that impact ammoniac, manganese and GABA metabolism and contribute to hepatic encephalopathy
Risk detection / prediction
High and low gene count people

Low gene count individuals (1/4) have less healthy metabolic & inflammatory traits

Increased adiposity, insulin resistance, dyslipidaemia, inflammation higher risk for type 2 diabetes, cardio-vascular & hepatic complications

<table>
<thead>
<tr>
<th></th>
<th>LGC</th>
<th>HGC</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (men/women)</td>
<td>68 (23/45)</td>
<td>224 (113/111)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age Yrs</td>
<td>56 ± 7.5</td>
<td>57 ± 7.3</td>
<td>0.86</td>
<td>0.89</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>32 (29 - 34)</td>
<td>30 (23 - 33)</td>
<td>0.035</td>
<td>0.059</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>95 (75 - 100)</td>
<td>86 (71 - 100)</td>
<td>0.019</td>
<td>0.037</td>
</tr>
<tr>
<td>Fat %</td>
<td>37 (29 - 42)</td>
<td>31 (25 - 39)</td>
<td>0.0069</td>
<td>0.022</td>
</tr>
<tr>
<td>S-Insulin (pmol/l)</td>
<td>50 (35 - 91)</td>
<td>44 (26 - 66)</td>
<td>0.0095</td>
<td>0.023</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>1.9 (1.2 - 3.3)</td>
<td>1.6 (0.9 - 2.6)</td>
<td>0.012</td>
<td>0.027</td>
</tr>
<tr>
<td>p-Triglycerides mmol/l</td>
<td>1.32(0.97 – 1.76)</td>
<td>1.15 (0.82 – 1.57)</td>
<td>0.0014</td>
<td>0.013</td>
</tr>
<tr>
<td>P-Free fatty acids (mmol/l)</td>
<td>0.55 (0.39 - 0.70)</td>
<td>0.48 (0.35 - 0.60)</td>
<td>0.014</td>
<td>0.029</td>
</tr>
<tr>
<td>S-Leptin (µ/l)</td>
<td>17.0 (6.7 – 32.6)</td>
<td>8.3 (3.4 – 26.4)</td>
<td>0.0036</td>
<td>0.019</td>
</tr>
<tr>
<td>S-Adiponectin (mg/l)</td>
<td>7.5 (5.5 – 12.9)</td>
<td>9.6 (6.7 – 13.7)</td>
<td>0.006</td>
<td>0.022</td>
</tr>
<tr>
<td>B-leucocytes (10⁹/l)</td>
<td>6.4 (5.2 - 7.8)</td>
<td>5.6 (4.8 - 6.9)</td>
<td>0.0021</td>
<td>0.014</td>
</tr>
<tr>
<td>B-Lymphocytes (10⁹/l)</td>
<td>2.1 (1.6 - 2.3)</td>
<td>1.8 (1.5 - 2.1)</td>
<td>0.00082</td>
<td>0.012</td>
</tr>
<tr>
<td>P-CRP (mg/l)</td>
<td>2.3 (1.1 - 5.7)</td>
<td>1.4 (0.6 - 2.7)</td>
<td>0.00088</td>
<td>0.012</td>
</tr>
<tr>
<td>S-FIAF (µg/l)</td>
<td>88 (72 - 120)</td>
<td>78 (60 - 100)</td>
<td>0.0047</td>
<td>0.021</td>
</tr>
</tbody>
</table>
Microbiome-poor obese Danes gain more weight

Similar microbial and metabolic/inflammatory profiles in French (n=49) and Danes (n=292)

6 MGS identify at-risk individuals that are microbe-poor with 95% accuracy

Cotillard et al. Nature 2013, doi: 10.1038/nature12480.39
Gut gene richness in health & disease, n=1400

Healthy

Patients

Atrophy of the neglected organ in some diseases

Emmanuelle Le Chatelier, Edi Prifti et al.
Microbe-poor gut microbiome is less healthy

Low butyrate, high LPS, high H_2S

Microbiome richness is associated with health and well-being.

It is better to be rich than poor.

We need more gut bacteria!
Integration of clinical phenotypes, microbiome and metabolome data reveals microbial species important for a disease

Microbiome and insulin resistance

- 277 non-diabetic individuals
- 75 T2D patients

The IR-associated metabolome was associated with the gut microbiome-encoded functions:

- Higher potential for LPS and BCAA biosynthesis
- Reduced potential for BCAA transport into bacterial cells

Positive correlations between microbial functions and IR are largely driven by a few species, notably *Prevotella copri* and *Bacteroides vulgatus*, suggesting that they may directly impact host metabolism. We tested this hypothesis in mice on a high-fat diet, and found that a challenge with *P. copri* led to increased circulating serum levels of BCAAs and insulin resistance.

Dysbiosis of the human gut microbiota impacts the serum metabolome and contributes to insulin resistance.

Effect of drugs – the case of type 2 diabetes

Forslund et al. 2015, Nature, 528:262-6. doi: 10.1038/nature15766
The drug profile in Danish patients with type 2 diabetes

Blood glucose lowering
• 77 % metformin
• 13 % sulfonylurea
• 19 % insulin
• 15 % dipeptidyl peptidase-4 (DPP4) inhibitors or glucagon-like peptide-1

Blood pressure lowering
• 73 %

Blood lipid lowering
• 75 %

Blood platelet anti-aggregation
• 30%

However, therapy-attributable microbiome variability could be explained by metformin treatment status only

Forslund et al. 2015, Nature, 528:262-6. doi: 10.1038/nature15766
Metformin is the first-line drug in treatment of elevated blood glucose in type 2 diabetes

The dominant effect of metformin is likely an inhibition of liver gluconeogenesis. It is known for adverse effects including gastrointestinal pain, bloating, nausea and meteorism.

The 199 type 2 diabetes patients were split into:
• 93 type 2 diabetes patients treated with metformin
• 106 metformin-naive type 2 diabetes patients
Metformin treatment was associated with a reduced *Intestinibacter* abundance across Danish, Chinese and Swedish samples and an increased *Escherichia* abundance in Danish and Swedish samples.

Functional annotations of *Intestinibacter bartletii* genome indicate resistance to oxidative stress and ability to degrade fucose, suggesting involvement in mucus degradation.

Forslund et al. 2015, Nature, 528:262-6. doi: 10.1038/nature15766
Serum metformin levels of metformin-treated T2D patients correlated positively with *Escherichia* abundance and negatively with *Intestinibacter* abundance.

These metformin-induced changes might derive from taxon-specific resistance/sensitivity to the known *bacteriostatic* properties of metformin.

Forslund et al. 2015, Nature, 528:262-6. doi: 10.1038/nature15766
Mixed blessings of metformin

- improved glucose homeostasis via enhanced gut gluconeogenesis
- bloating and intestinal discomfort via increased hydrogen production and sulfate reduction

Forslund et al. 2015, Nature, 528:262-6. doi: 10.1038/nature15766
Impact of drugs on microbiome should be considered

- when dissecting disease signatures
- when developing diagnostic/prognostic tools
- when testing for phenotype transferability in gnotobiotic mice experiments

Forslund et al. 2015, Nature, 528:262-6. doi: 10.1038/nature15766
Is microbiome alteration a cause, a consequence or a contribution to a chronic disease?
Contribution of the microbiome to the disease – two examples

- Low richness gut microbiome may be less healthy
 - Low butyrate producers (gut health)
 - Abundant pro-inflammatory species (systemic inflammation)

- Liver cirrhosis gut microbiome may be toxic
 - Ammoniac, manganese, GABA (encephalopathy)
Microbiome restoration

- Diet, nutritional interventions
- Molecules
 - Promoters of “good” species (prebiotics, fibers)
 - Inhibitors of “bad” species (narrow spectrum AB, bacteriocins, bacteriophages)
- Microbes
 - Probiotics
 - Communities
 - Transplantation
We should strive to restore or preserve health by modulating unhealthy/toxic microbiome...

...while attempting to unravel the mechanisms which underlie its advent and its effects on our bodies
Impact of human microbiome research on public health

A tremendous potential of human microbiome

• In diagnostics
• In prognostics
• In patient monitoring
• As target for modulation to improve health

Could help us to better preserve health and better treat the disease

And thus save untold resources & human suffering
How to introduce microbiome into public health?

MetaGenoPolis

Pre-industrial Demonstrator
Director of the INRA Unit: Florence Haimet
Director of Research: Joël Doré
Grant P.I. : S. Dusko Ehrlich

Funding: 19M€ for 2012-2019 by Investissements d’Avenir
Budget for the period: 60+ M€
Landmark human microbiome papers

► 60+ publications on quantitative & functional Metagenomics

2012 : Qin et al. Nature, Type II Diabetes
2013 : Le Chatelier et al. Nature, Richness of gut microbes and metabolic markers
2013 : Sunagawa et al. Nature Methods, Universal phylogenetic markers
2014 : Li et al. Nature Biotech, 10 millions genes reference catalog
2015 : Xiao et al. Nature Biotech, A mouse gut catalogue
2015 : Qin et al. Nature, Accurate liver cirrhosis diagnostic,

► 27 patent applications; 19M € of research contracts (54% private sources) since 2012

► Co-chair of the International Human Microbiome Consortium (2012-2014)
► Co-organizer of the International Human Microbiome Congress since 2010 (2000 participants in 2013)
► Networking with academia, clinics & industry, nationally and internationally
Acknowledgments

MetaHIT Consortium

Micro-Obese: K. Clement, JD. Zucker, J. Doré
S. Dusko EHRLICH
Nicolas PONS
Anne-Sophie ALVAREZ
Magali BERLAND
Franck GAUTHIER
Ndelye GAYE
Julienne HANA
Marie JEAMMET
Emmanuelle LE CHATELIER
Nicolas MAZIERS
Florian PLAZA ONATE
Florence THIRION
Kevin WEISZER

Florence HAIMET
S. Dusko EHRLICH
Joël DORE

Joël DORE
Florence LEVENEZ
Mickael CAMUS
Remy PERON
Mylène ROBINET
Thierry
VANDUYVENBODEN

S. Dusko EHRLICH
Nathalie GALLERON
Benoit QUINQUIS
Mélina CORDEAU
Robin MASSEY
Laetitia PASERO

Plateforme commune
Sophie HEBERT
Marine FRAISSANGE
Anthony DOBEZ
Damien TOTY
Merci beaucoup!
And take good care of your microbiome...

www.mgps.eu