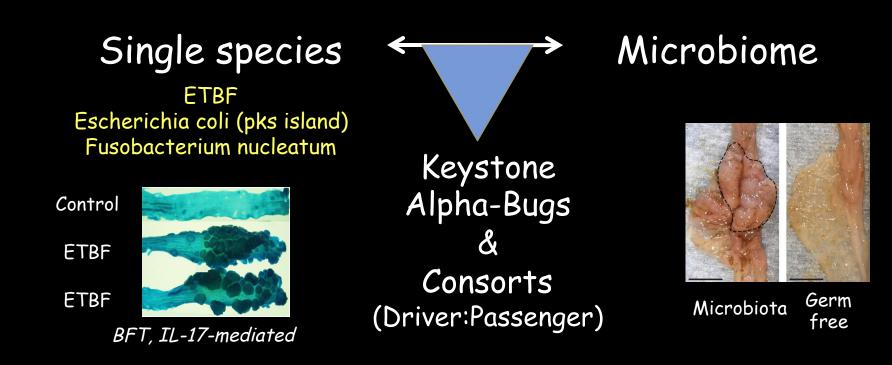

#### Using biofilms (and metagenomics) to diagnose colon cancer


Cynthia L Sears, M.D. Johns Hopkins University School of Medicine



2 µm

First International Conference on Clinical Metagenomics October 14, 2016

# Microbial:Colon Cancer Disease Paradigms



ETBF = Enterotoxigenic Bacteroides fragilis

Sears CL, Pardoll DM J Infect Dis 203:306, 2011 Sears CL, Garrett WS Cell Host Microbe 15:317, 2014

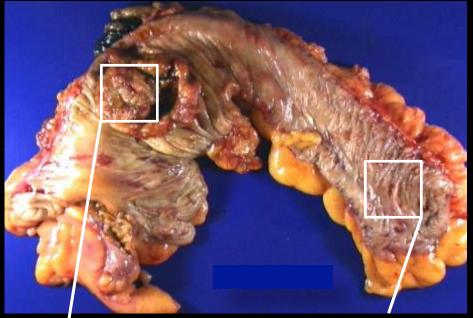
## Hypothesis

The microbiota and likely specific members of the microbiota are important to the initiation and progression of colon cancer.

# Microbiota organization is a distinct feature of proximal colorectal cancers

Christine M. Dejea<sup>a</sup>, Elizabeth C. Wick<sup>b</sup>, Elizabeth M. Hechenbleikner<sup>b</sup>, James R. White<sup>c, 1</sup>, Jessica L. Mark Welch<sup>d</sup>, Blair J. Rossetti<sup>d</sup>, Scott N. Peterson<sup>e,2</sup>, Erik C. Snesrud<sup>e,3</sup>, Gary G. Borisy<sup>d</sup>, Mark Lazarev<sup>f</sup>, Ellen Stein<sup>f</sup>, Jamuna Vadivelu<sup>9</sup>, April C. Roslani<sup>h</sup>, Ausuma A. Malik<sup>h</sup>, Jane W. Wanyiri<sup>f</sup>, Khean L. Goh<sup>i</sup>, Iyadorai Thevambiga<sup>9</sup>, Kai Fu<sup>j</sup>, Fengyi Wan<sup>j,k</sup>, Nicolas Llosa<sup>l</sup>, Franck Housseau<sup>k</sup>, Katharine Romans<sup>m,n</sup>, XinQun Wu<sup>f</sup>, Florencia M. McAllister<sup>k</sup>, Shaoguang Wu<sup>f</sup>, Bert Vogelstein<sup>m,n</sup>, Kenneth W. Kinzler<sup>m,n</sup>, Drew M. Pardoll<sup>f,k</sup>, and Cynthia L. Sears<sup>a,f,k,4</sup>

#### PNAS | December 23, 2014 | vol. 111 | no. 51 | 18321-18326



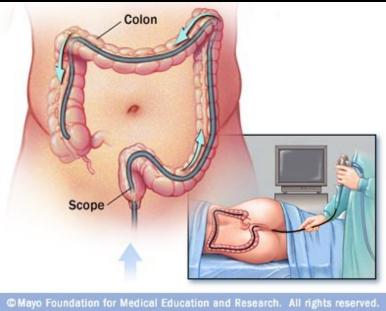

Christine Dejea

Johns Hopkins School of Medicine

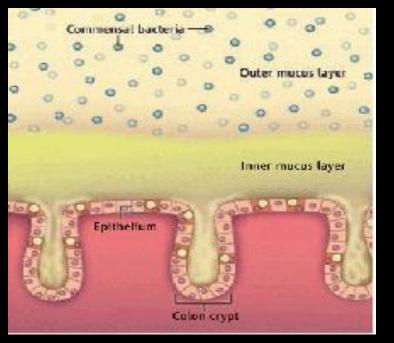
# Human Sample Collection

#### Individuals with colon cancer




#### Tumor Mucosa

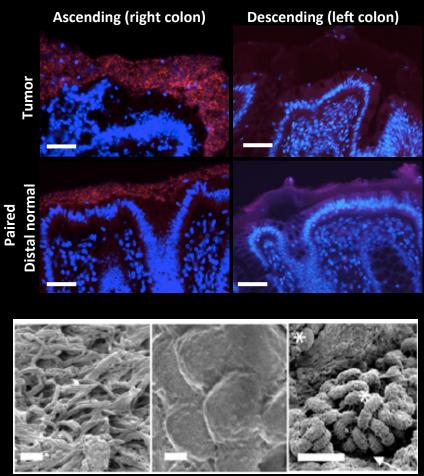
Paired normal mucosa


#### Fix tissues in Carnoy's

#### Vogelstein group Pathology Suite Surgery Department, Dr. Liza Wick Colonoscopy Suite, Drs. Ellen Stein and Mark Lazarev

# Colonoscopy control subjects without colon cancer




#### Spatial mucosal microbiota geography: defining CRC bacterial biofilms

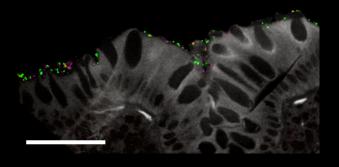


Gunnar Hansson

#### Dejea et al. PNAS, December 2014

#### Colon Cancer Host Universal Bacterial 165 FISH




Bf+ R CRC Bf- L CRC Bf+ R adenoma

# Bacterial biofilms in CRC or colonoscopy hosts are polymicrobial &, in CRC, mucosa invasive.

Colon Cancer Host

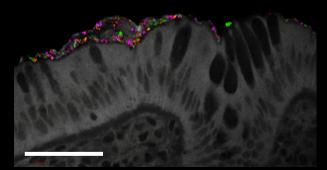
Healthy Colonoscopy Host

Right colonoscopy bx



Paired normal polymicrobial bacterial invasion (50%)

Right tumor


polymicrobial bacterial

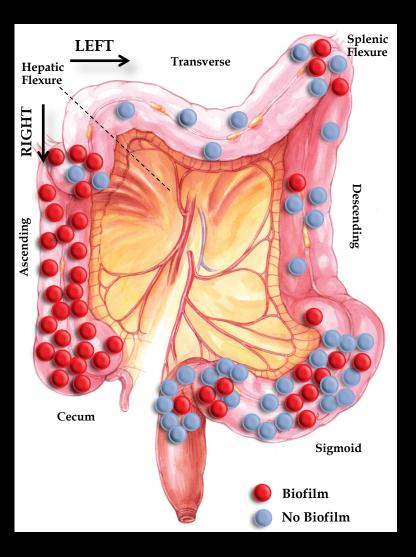
invasion

(100%)

Dejea et al. PNAS, December 2014






Throughout colon

~15% of healthy hosts bf+

Bacterial invasion not seen

N=142

#### Sporadic right colon tumors are defined by bacterial biofilms Johns Hopkins & University of Malaya cohorts





Julia Drewes

When biofilms are present, CRC and normal tissues are nearly always 100% concordant for biofilms.

Diet, colon prep, other demographics do not correlate with findings

> Dejea et al. PNAS, December 2014 Dr. Jamuna Vadivelu

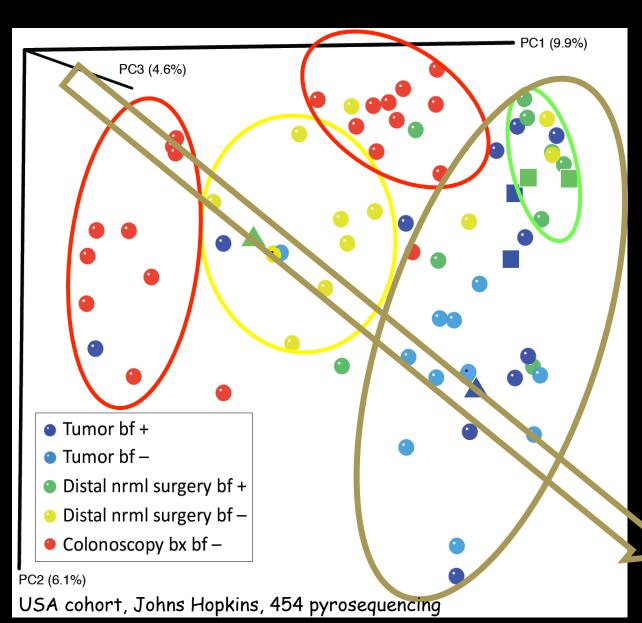
#### Biofilms alter normal colon epithelial biology: colonic epithelial cell proliferation (Ki67)

#### Colon Cancer Patient Distal Normal

# Biofilm negative mucosa Base Crypt top Base Crypt top Biofilm negative mucosa Biofilm negative mucosa Biofilm negative mucosa Biofilm negative mucosa Biofilm positive mucosa Biofilm positive mucosa Biofilm positive mucosa

P<0.0001

P<0.01


Colonoscopy Control Biopsy

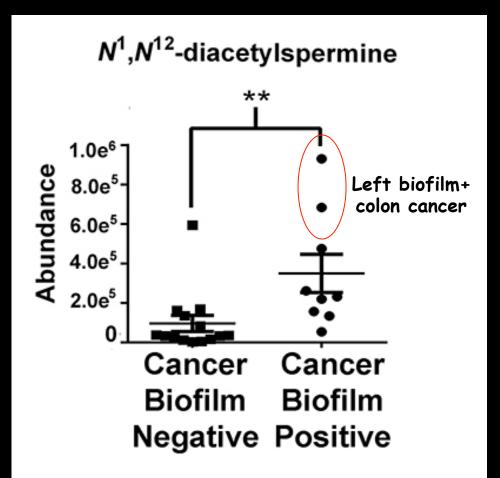
#### Also changes E-cadherin, IL-6, pStat3

Dejea et al. PNAS, December 2014

All left samples

# Principle coordinates analysis of bacterial clustering




PNAS, December, 2014

165 rRNA sequencing Hopkins cohort

Limited number specific species identified as differentially abundant between biofilm+ and biofilm- tissues.

Decreased diversity of microbiome

#### Metabolomics: Biofilm presence correlates with increased N<sup>1</sup>, N<sup>12</sup>-diacetylspermine (untargeted → targeted mass spectroscopy pipeline)

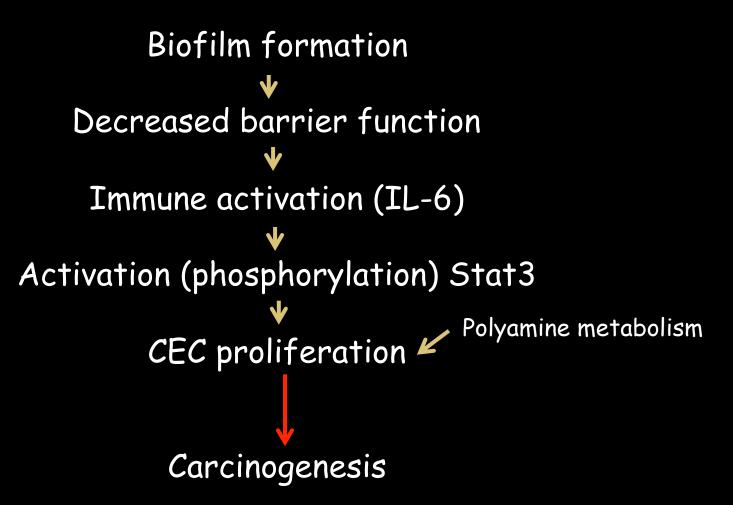


N<sup>1</sup>, N<sup>12</sup>-diacetylspermine also increased in biofilm+ normal tissues.

More detailed studies suggest produced both by biofilm & host cells



Caroline Johnson




Gary Siuzdak

Scripps Institute

Cell Metab 21:891, 2015

## Hypothesis Biofilms in healthy individuals increase the risk of developing adenomas or colon cancer



#### Working Postulates

#### Sporadic Colon Cancer

Biofilm+ colon cancer is driven by carcinogenic mechanisms induced by invasive polymicrobial bacterial biofilms.

Biofilm negative colon cancer: work in progress

#### Hereditary Colon Cancer

Work in progress

#### Goal

By defining the putative microbial drivers of colon carcinogenesis, we can identify microbial-based biomarkers to test as new approaches to the prevention of human colon cancer.

# Acknowledgements











<u>Sears Laboratory</u>

Ki-Jong Rhee Shervin Rabidazeh Emilia Albesiano Florencia McAllister Augusto Franco

<u>Microbiology</u> Brandon Ellis Karen Carroll

<u>Casero Laboratory</u> Christina Destefano-Shields <u>Baylin Laboratory</u> Heather O'Hagan

<u>JHU/SKCCC</u> David Huso Bert Vogelstein Kathy Romans-Judge University of Malaya Jane Wanyiri Jamuna Vadivelu April Roslani Ausama Malik Khean Goh Ambiga Iyadorai

Funding: NIH (NIDDK, NCI), Institut Mérieux