

Next Generation Sequencing for Metagenomics

Genève, 13.10.2016

Patrick Wincker, Genoscope-CEA

articles

Human and model organisms sequencing were initially based on the Sanger method

Sanger shotgun sequencing was used subsequently for environmental metagenomics

Environmental Genome Shotgun Sequencing of the Sargasso Sea

J. Craig Venter, ^{1*} Karin Remington,¹ John F. Heidelberg,³ Aaron L. Halpern,² Doug Rusch,² Jonathan A. Eisen,³ Dongying Wu,³ Ian Paulsen,³ Karen E. Nelson,³ William Nelson,² Derrick E. Fouts,³ Samuel Levy,² Anthony H. Knap,⁶ Michael W. Lomas,⁶ Ken Nealson,⁵ Owen White,² Jeremy Peterson,³ Jeff Hoffman,¹ Rachel Parsons,⁶ Holly Baden-Tillson,¹ Cynthia Pfannkoch,³ Yu-Hui Rogers,⁴ Hamilton O. Smith¹ Community structure and metabolism through reconstruction of microbial genomes from the environment

Gene W. Tyson¹, Jarrod Chapman¹⁵, Philip Hugenholtz¹, Eric E. Allen¹, Rachna J. Ram¹, Paul M. Richardson¹, Victor V. Solovyev¹, Edward M. Rubin¹, Daniel S. Rokhsat¹⁻¹ & Jillia F. Banfield¹²

Berkeley, California 94720, USA ⁴Joint Genome Institute, Walnut Creek, California 94598, USA

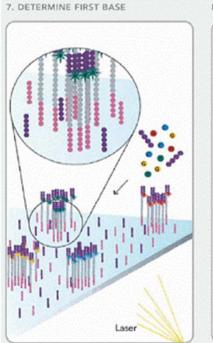
2006-2011 : Sequencing by flux changes the scale and cost of genomics projects

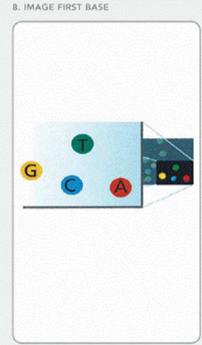
454

All these methods use DNA amplification and synthesis but with different approaches \rightarrow All produced short reads (100s bp)

SEQUENCING

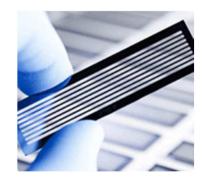
illumina^{*}




echnologies'

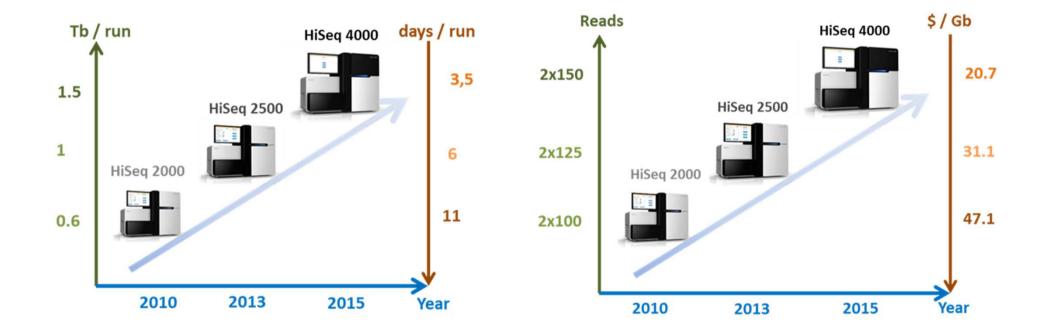
Complete Genomics Powering large-scale human genome studies

Cea Illumina Sequencing by Synthesis


First chemistry cycle: to initiate the first sequencing cycle, add all four labeled reversible terminators, primers and DNA polymerase enzyme to the flow cell.

After laser excitation, capture the image of emitted fluorescence from each cluster on the flow cell. Record the identity of the first base for each cluster.

Second chemistry cycle: to initiate the next sequencing cycle, add all four labeled reversible terminators and enzyme to the flow cell.


Laser

9. DETERMINE SECOND BASE

Very high throughput Low error rate (<1%) Short read length High turnover time

Technological improvements at all scales are routine every year

Deep coverage of complex microbial communities

High fragmentation of the individual species genomes

Method is efficient at building gene catalogues

Vol 464 4 March 2010 doi:10.1038/nature08821

ARTICLES

nature

A human gut microbial gene catalogue established by metagenomic sequencing

Junjie Qin¹*, Ruiqiang Li¹*, Jeroen Raes^{2,3}, Manimozhiyan Arumugam², Kristoffer Solvsten Burgdor⁴, Chaysavanh Manichanh⁵, Trine Nielsen⁴, Nicolas Pons⁶, Florence Levene⁶, Takuji Yamada², Daniel R. Mende², Junhua Li^{1,2}, Junimiz Xu¹, Shaochuan Li¹, Dongfang Li^{1,4}, Jianjun Cao¹, Bo Wang¹, Hulging Liang¹, Hulsong Zheng¹, Yinlong Xie^{1,2}, Julien Tap⁶, Patricia Lepage⁶, Marcelo Bertalan³, Jean-Michel Batto⁶, Torben Hansen⁴, Denis Le Paslier¹⁰, Allan Linneberg¹¹, H. Bjørn Nielsen⁹, Eric Peletier¹⁰, Pierre Renault⁶, Thomas Sicheritz-Ponten⁷, Keith Tumer², Hongmei Zhu¹, Chang Yu¹, Shengting Li¹, Min Jian¹, Yan Zhou¹, Yingrui Li¹, Xiuqing Zhang¹, Songgang Li¹, Nan Qin¹, Huanming Yang¹, Jian Wang¹, Søren Brunak⁸, Joel Doré⁶, Francisco Guamer², Karsten Kristiansen¹³, Oluf Pdersen^{11,4}, Julian Parkhill¹², Jean Weissenbach¹⁰, MetaHIT Consortium⁴, Peer Bork²,

RESEARCH ARTICLE

OCEAN MICROBIOME

Structure and function of the global ocean microbiome

Shinichi Sunagawa,^{1,e} Luis Pedro Coehua,^{1,e} Samuel Chaffron,^{2,3,4,4} Jeax Roat Kuttima,¹ Karin Lahani,⁶ Guilem Sakazet,⁶ Bardya Dibanechiri,¹ Coeng Zatler,¹ Daniel R. Mende,¹ Adriana Alberti, ¹ Francisco M. Cornejo-Castillo,⁶ Paul I. Costea,¹ Corinne Crunad, ¹ Francesco d'Oridio,⁷ Stefan Engelen, ¹ Stabel Ferrera, ⁶ Josep M. Gasol,⁶ Lionet Guiki,⁹ Talk Hildermard, ¹ Fortan Kostad,¹⁰¹ Cytlie Lepoivre,¹⁰ Gipsi Lima-Mendez,^{11,1} Julie Poulain,² Bonnie T. Poulos,⁴ Marta Royo Lionch,⁶ Hugo Sarmedro,¹¹⁴ Sara Vietzishua,²¹⁴ Cdim Dimier,^{110,214} Mare Fleberal,¹⁰ Sarah Scarson,⁴⁰ Stefanie Kandes-Levis,¹⁰⁷ Tara Oceans coordinators; Chris Bowler,¹⁰⁰ Colomban de Vargas,²¹⁶ Galori, Corosly,⁴⁷⁸ Higle Grinniey,^{11,214} Paecal Hingung,¹² Daniele Indicone,²⁰⁰ Olivier Jallion,^{215,227} Fabrice Not,^{15,24} Hiroyuki Ogata,²⁰¹ Jean Weisenhach,^{10,216,216} Patier,^{10,216,216},¹¹⁰ Jar

Short-read sequencing brings opportunity to compare microbiome samples for gene content, but genomic context would be valuable to better interpret the data

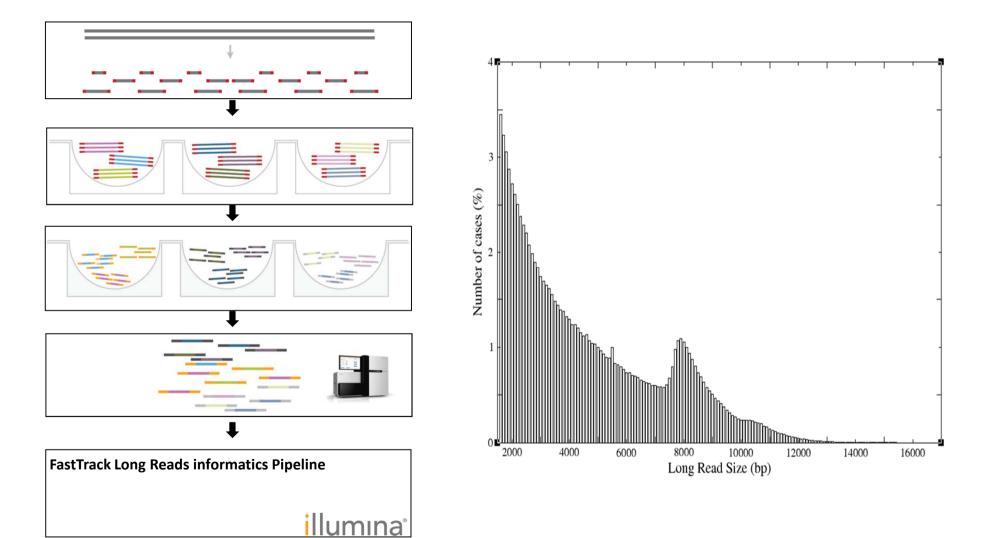
Bioinformatics methods have been established to reconstruct genome fragments from metagenomes ARTICLES

Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes

H Bjørn Nielsen^{1,3,13}, Mathieu Almeida^{3,5,3,2}, Agnieszka Sierakowska Juncker^{1,2}, Simon Rasmussen¹, Junhua Li^{g.,8}, Shinichi Sunagawa³, Damian R Plichta¹, Laurent Gautier¹, Anders G Pedersen¹, Emmanuelle Le Chatelier^{3,4}, Eric Pelletie^{1,6,1}, Jala Bonde^{1,2}, Tine Niesen¹¹, Chanysanuh Mairkanh⁴, Manimochyan Arumugam^{2,3,13}, Jean-Michel Batto^{1,4}, Marcelo B Quintaniha dos Santo⁴, Nikola Blom², Natalia Bornel⁴, Kristoffer S Burgdorf¹³, Foud Boumerbeu^{1,4}, Frances Caeusealta^{4,1}, Joil Dore^{4,4}, Jiott Dorerynekl, Francisco Caurare¹⁴, Torben Hansen^{1,13,5}, Falk Hildermal^{41,0,7}, Bolf S Kaas¹⁴, Sean Kanndy^{1,44}, Karsten Kristiansen^{2,13,15}, Boat Kultima⁹, Pierre Lonard^{14,1}, Hornee Levence^{4,4}, Ole Lund, Bouriane Moumerb^{4,15}, Doni Le Pasidir^{14,12}, Nicola Pons^{3,4}, Oluf Pedersen^{1,3,26,22}, Edi Prifti¹⁴, Junjie Qin^{6,7}, Jeroen Raes^{1,23,23,4}, Soren Sorensen²⁵, Julien Tap⁹, Sebastian Tima^{3,5}, David W U-Stery¹, Takuji Tamada^{3,47}, MetaHIT Consortium²⁴, Serro Bordenbrich, ^{4,4}, 31 Donnas Scheritz-Donten³, Zere Rot^{45,25}, Jun Wang^{1,33,25}, Soren Brunak^{12,2}, Se Drike Drini₄, ^{4,4}

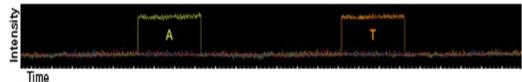
In the absence of exhaustive reference genomes for uncultured microbes, high-continuity assemblies are requested from environmental shotgun data

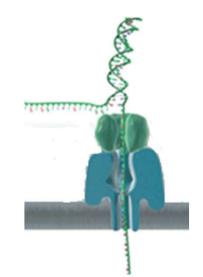
Recent trends : back to high continuity

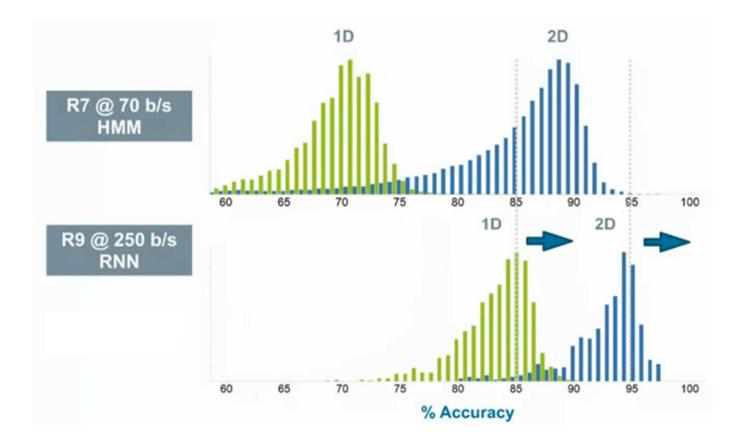


Long reads or re-phased short reads

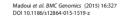
Synthetic long reads (« moleculo » approach)




From 2011 : Real-time single molecule sequencing



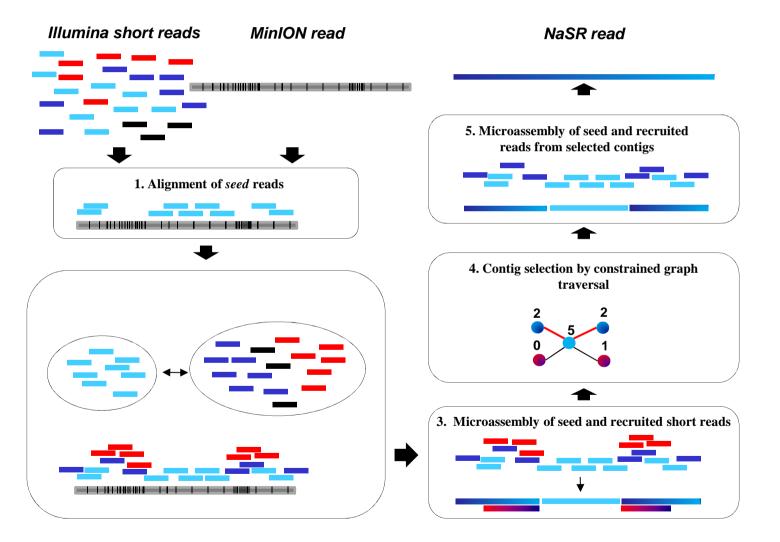
MinIon : Improving accuracy



MIXING SHORT AND LONG READS FOR OPTIMIZED GENOME ASSEMBLIES

Long but error-prone sequences can be complemented by short accurate reads

Long reads provide continuity


Short reads may be used to correct or to re-assemble sequences based on the long reads

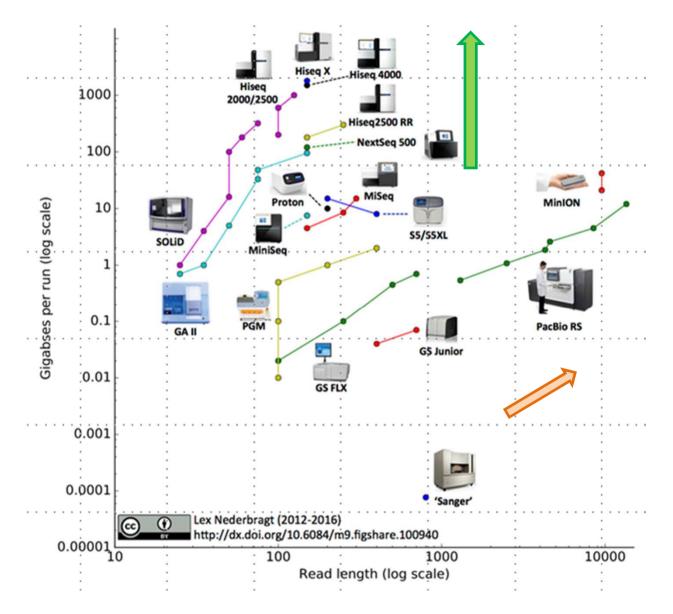
METHODOLOGY ARTICLEOpen AccessGenome assembly using Nanopore-guided long
and error-free DNA reads

Mohammed-Amin Madoui¹⁺, Stefan Engelen¹⁺, Corinne Cruaud¹, Caroline Belser¹, Laurie Bertrand¹, Adriana Alberti¹, Arnaud Lemainque¹, Patrick Wincker^{1,2,3} and Jean-Marc Aury^{1*}

97% of NaS reads have no error *A. baylyi* genome assembled as a single contig

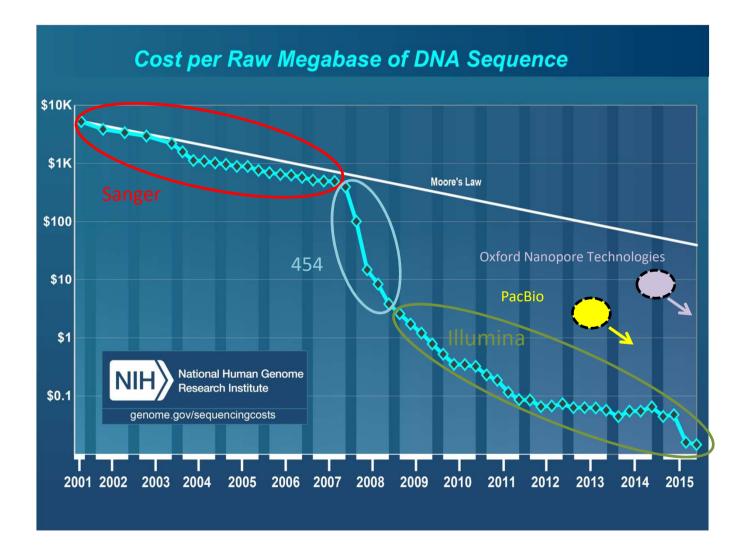
BMC Genomics

Still little use of long reads for complex metagenomes


Proof of concept for usefulness in reconstituting large genome regions from metagenome data

Main constraint is cost, particularly for studies with high sample numbers

Bioinformatic tools for metagenomic assemblies are still underdeveloped for long error-prone sequences



Sequencing technologies : read length and throughput

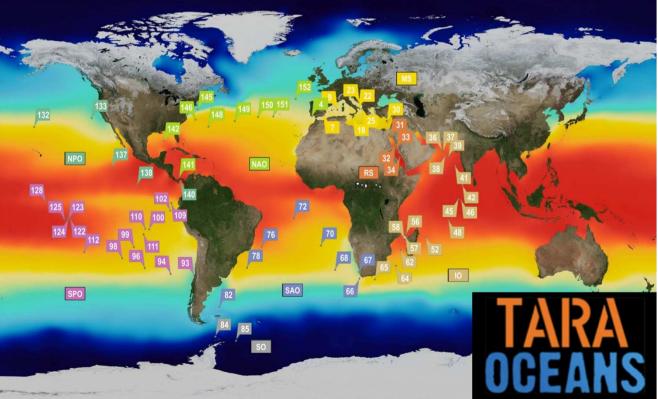
Evolution of sequencing costs



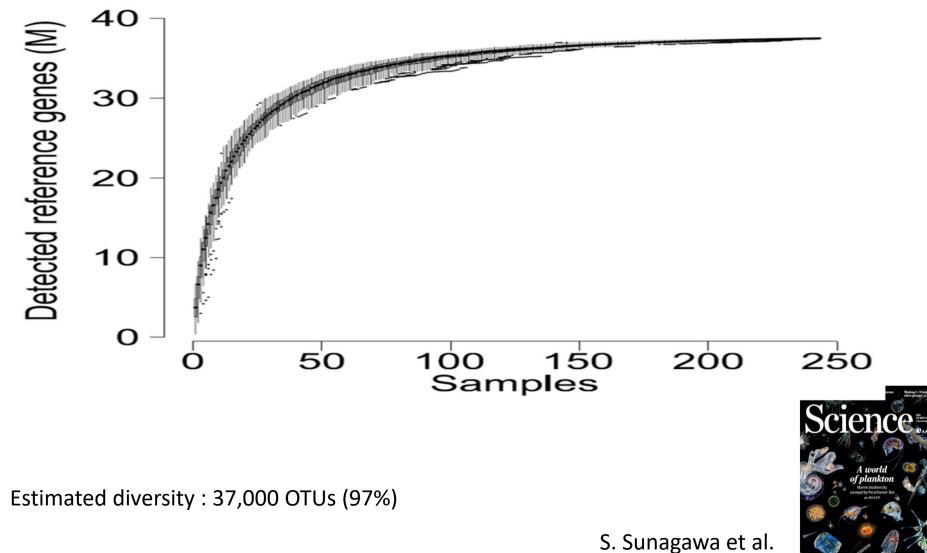
NEW APPLICATIONS OF SHORT-READ HIGH-THROUGHPUT SEQUENCING

Sequencing complex microbiomes to near-completion ?

Deciphering the microbial gene content of the surface oceans at palnetary scale



Ocean eco-systems biology



68 stations
3 depths
243 samples

7.2 Tbp DNA data in the context of the environment

The microbial gene content of the open ocean

... can be described using short-read massive sequencing for prokaryotes and viruses

The eukaryote gene content is the next target

Reconstructing genome context may be helped by new long read technologies

Acknowledgements

Sequencing team Karine Labadie Arnaud Lemainque Corinne Cruaud

Development team Valérie Barbe Adriana Alberti Julie Poulain Informatics Jean-Marc Aury Eric Pelletier Betina Porcel Olivier Jaillon Benjamin Noel Yoann Seeleuthner Stephane Engenlen M. Amin Madoui Caroline Belser Arnaud Couloux

