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Clinical resistance rapidly follows deployment for ALL antibiotics
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Treatment of antibiotic resistant infections is an increasing challenge

Antibiotic Resistant Infections
Are A Leading Cause of Death
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Treatment of Antibiotic Resistant
Infections Is Expensive
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Resistant Infections Are Increasing BUT

New Antibiotic Discovery Is Decreasing
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Methods for studying antibiotic resistance in microbial communities
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Functional metagenomic selections identify

novel antibiotic resistance genes in microbial communities
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Applied in Rondon et al. ISME (2000); Sommer et al. Science (2009); Forsberg et al. Science (2012); Forsberg et al. Nature (2014);
Clemente et al. Science Advances (2015); Moore et al. Microbiome (2015); Gibson et al. Nature Microbiology (2016); Pehrsson et al., Nature (2016)
Reviewed in Handelsman et al. Chem Bio (1998); Allen et al. Nat Rev Micro (2010); Dantas et al. Annu Rev Micro (2013)



Increasing functional metagenomic throughput via next-gen sequencing

Functional Metagenomics
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PARFuMS: Parallel Annotation and Reassembly of Functional Metagenomic Selections
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Applied in Sommer et al. Science (2009); Forsberg et al. Science (2012); Forsberg et al. Nature (2014); Clemente et al. Science Advances (2015);
Moore et al., Microbiome (2015); Gibson et al. Nature Microbiology (2016); Pehrsson et al., Nature (2016)
Reviewed in Dantas et al. Annu Rev Micro (2013); Dantas et al. American Scientist (2014); Crofts et al. Nature Reviews Micro (2017)



Transmission networks of microbiomes and resistomes across habitats
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MDR soil Proteobacteria exchange resistance genes with pathogens

BUT majority of extensive soil resistome has low potential for exchange
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But MOST soil resistance genes are novel and co-localized with fewer mobilization genes than pathogens




BUT cryptic soil resistance genes are still clinically-relevant

e.g. tetracycline resistance

Two major mechanisms of tetracycline

resistance:
— Active Efflux (1) Common Tetracycline Resistance Mechanisms
— Ribosomal Protection (2) @ et @)
— Both prevalent in pathogens A L H*

0O

3'd mechanism: tetracycline
inactivation

— 3 genes from human commensals
— Tet(X) only characterized enzyme
— Not seen in pathogens until 2013
— Oxidizes drug via FAD cofactor

Drug inactivation is large clinical threat
— e.g. B-lactamases, acetyltransferases
— Allows survival of “cheaters”
— Eliminates drug, energetically favorable

Adapted from Hillen (2002)



Playing with fire: Touting drugs “unaffected”
by “common” resistance mechanisms

AAC
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Eravacycline

Target- and Resistance-Based Mechanistic Studies with|TP-434,Ja
Novel Fluorocycline Antibiotic

Trudy H. Grossman,” Agata L. Starosta,® Corey Fyfe,” William O'Brien,” David M. Rothstein,”* Aleksandra Mikolajka,®
Daniel N. Wilson,®® and Joyce A. Sutcliffe”

Gene Center, Department of Biochemistry,” and Center for Integrated Protein Science Munich (CiIPSM),” University of Munich, Germany, and Tetraphase Pharmaceuticals,
nc., Watertown, Massachusetts LJSAS

¥%omal protection. The mcchamsm of action ufTP 434 was assessed
using both cell-based and in vitro assays. In Escherichia coli cells expressing recombinant tetracycline resistance genes, the MIC
of TP-434 (0.063 pg/ml) was unaffe:.ted by tet(M), tet(K), and ret(B) and increased to 0.25 and 4 pug/ml in the presence of tet(A)
and tet(X), respectively. Tetracycline, in contrast, was significantly less potent (MIC = 128 ug/ml) against E. coli cells when any
of these resistance mechanisms were present. TP-434 showed potent inhibition in E. coli in vitre transcription/translation (50%
inhibitory concentration [ICs,] = 0.29 = 0.09 pg/ml) and [*H]|tetracycline ribosome-binding competition (ICs, = 0.22 * 0.07
M) assays. The antibacterial potencies of TP-434 and all other tetracycline class antibiotics tested were reduced by 4- to 16-fold,
cnmpared to that of the wild- -type control strain, against Prﬂpimlibacrerimn acnes strains carrying a 165 rRNA mutation,
G1058C, a modlﬁcatmn that ahanges the confnrnmtmn of the ]_;1:1*1:113,1"},F bmdmg site of tetracycline in the ribosome. Taken to-

gether, databiintiitetiiing jre and inhibits protein synthesis and
that thifg activity is largely unaffected by the common tetracycline resistance mechanisms.




NINE new tetracycline inactivating enzymes (Tet-Destructases) from SIX soils
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Only homolog from
pathogenic Legionella*

Resistance conferred by tetracycline inactivation

Forsberg, Patel, Wencewicz, Dantas. Chemistry & Biology, (2015)



Tetracycline destructases are widespread in diverse metagenomes and pathogens

69 additional potential
tetracycline destructases were
computationally predicted from

diverse metagenomes:
« Soil

Gut

Latrine

Previously described

Drew Gasparrini

Tet(X) identified in MDR pathogens:

E. faecium

S. aureus

K. pneumoniae £J (Leski et al. 2013)
A. baumanii &7 (Deng et al. 2014)

P. aeuruginosa £/ (Leski et al. 2013)

Enterobacter spp. &7 (Leski et al. 2013)

Tetracycline inactivation is an
emerging mechanism of clinical
resistance to a crucial class of drugs!

Gasparrini et al., unpublished



Biochemical and structural elucidation of novel mechanism of resistance

(in collaboration with Tim Wencewicz and Niraj Tolia)
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Catalytic efficacy of tetracycline destructases is 4-15 fold greater than only previously
described tetracycline inactivating enzyme

1 ]

TE H, =1 \
30| Chirmical Formalic s My CM0,"
Exact Mans: $22.0845
5 slscular Weight £13 EXTE
56
Choerical Form

1_::5 Esuci l.l- ul\.lﬂi
1 90 mins g e Mizleculng Walght: 450 8478
N 50 mins, j TE “BHy
‘t“/ 30 mins B 3
400 Omins  No Enzyme 2. .
90 mins =3 LR MaE B o
= 60 mins ™ WA
= § " 153
E H 30 mins 3 g
200 J 0 mins Tet()(} 30 BT 1211 Y o
i o Chamiral Fomss: CpM g N0
90 mins 3 ::u:m.ur.';u :
] B0 ming 20 Molocular Weight: 4670008
: tj 30 mins 15
0 Omins  Tet(50) w3
E A1 Qe
T T T T T T T T T T T T T T T LE . . 5 a5 3
8 10 12 14 16 18 20 22 24 26 ol 23 e ‘"‘I*,j'l‘L | (P sy e
Minutes P TR PR P PN -:.: Sa sM s S0 SO

Tetracycline destructases produce novel decay products of tetracycllne antibiotics,
characterized by HPLC, HR-MS/MS



Anhydrotetracycline inhibits tetracycline destructases

Inhibition of antibiotic inactivating enzymes is a powerful tool for combating resistance
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A structural basis for anhydrotetracycline inhibition

inhibitor binding site

inhibitor

e PR
[ JeFADOUT % —> Pad

prevents FAD prevents subtrate
conversion binding

« aTC binds at distinct “inhibitor binding site” to (a) lock FAD cofactor in the
unproductive OUT conformation and (b) block substrate binding

Park*, Gasparrini*, Reck, Symister, Elliot, Vogel, Wencewicz*, Dantas*, Tolia*. Nature Chemical Biology (2017)



Inhibiting tetracycline destructase activity rescues tetracycline efficacy

Anhydrotetracycline synergistically rescues tetracycline antibiotic activity
against E. coli expressing tet(56)

0 ug/mLaTC 150
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Park*, Gasparrini*, Reck, Symister, Elliot, Vogel, Wencewicz*, Dantas*, Tolia*. Nature Chemical Biology (2017)



Transmission networks of microbiomes and resistomes across habitats
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Resistance spreads across habitats




Antibiotic perturbation of the human microbiome can be dysbiotic

Common antibiotic mechanisms

Inhibition of cell wall
synthesis or disruption
of membrane

Riboflavin Vitamin . DNA polymerase

complex
Folater D B
Sulfonamides

Replication fork

B-lactams

Quinolones

Aminoglycosides Nucleic acid synthesis

Disruption of
single-carbon
metabolism

mRNA

Topoisomerase

Disruption of DNA

Ribosome replication and integrity

Inhibition of
ribosome

Crofts, Gasparrini, Dantas. Nature Reviews Micro (2017)

) Conception Breastfeeding Solid food Reproduction
Life event
Birth Ambulation Fuberty Loss of mobility
Age (years) 0.75 0 1 2 3 4 5 11-16 16-40 70+
P | | || | | l

Antibiotic timing { —_ ]  TTm o Tmm s s s s s s s s s s s s = = = = = = = = = = = =

( |

Increased risk of infection by Clostridium difficile

Unknown

Increased risk of type 2 diabetes associated with
repeated use

Health
consequences

May increase risk of childhood obesity

Increased risk of infections, asthma, allergies and type 1 diabetes

Loss of microbial diversity and enrichment for resistance genes in the microbiome

Langdon, Crook, Dantas. Genome Medicine (2016)



Antibiotics are the most prescribed medication for preterm infants

Preterm birth is leading cause of infant death
Preterm infants are highly susceptible to infections

99%

of VLBW infants receive
antibiotics
in the
1st two days of life

Frequency (x1000)
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[ other Medication
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Gasparrini*, Crofts*, Gibson, Tarr, Warner, Dantas. Gut Microbes, (2016)



Gut microbiomes of preterm infants are dominated by MDROs

We can predict microbiome and resistome responses to antibiotics

N=84

Anifibiotic Treaiment

o 0 I m——_—_- .——-.—:

1
Treatment I Fecal Sample Analyzed
I 1
:— O— o—& @ @ H—:
| |

Birth N = 401 fecal samples Discharge from NICY
(~2.5 months of life)

Enterococcus faecalis®

A Species Richness
. Escherichia unclassified

@Staphylococcus epidermis Escherichia coli,

OEnterobacl‘er cloacae

Klebsiella pneumoniae °

oK/ebsie//a oxytoca

PR 85% prediction accuracy
Molly Gibson 125 based on 4 variables

Gibson, Wang, Ahmadi, Burnham, Tarr, Warner, Dantas. Nature Microbiology, (2016)



Transmission networks of microbiomes and resistomes across habitats
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Gut microbiomes across the globe are structured by lifestyle

Resistomes are structured by phylogeny and habitat

Village in Rural Peri-urban Shanty-
El Salvador (RES)  Town (PST) in Peru
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Erica Pehrsson Pablo Tsukayama
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Pehrsson*, Tsukayama*, Patel, Mejia, Sosa, Navarette, Calderon, Cabrerra, Hoyos, Bertoli, Berg, Gilman, Dantas. Nature (2016)



|dentification of resistome dissemination hotspots may help with surveillance

AR gens category

B Drug afflux

B Drug inactvation

B Resistance modulation
O Targe! bypass

B Targnt protoction

Chicken coops (El Salvador) and Sewage treatment plant (Peru)
were hotspots for resistome exchange between humans and
the environment

Pehrsson*, Tsukayama*, et al. Nature (2016)



Antibiotic resistance is an ECOLOGICAL problem
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Dantas & Sommer, American Scientist (2014)
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