

From yesterday to tomorrow: past, present and future of sequencing The NGS revolution

Laurent FARINELLI

19 October 2017

ICCMg2 Second International Conference on Clinical Metagenomics

Geneva, Switzerland

Be at the right place and time [•] [•] [•] [•] 1996

GlaxoWellcome

Geneva Biomedical Research Institute

Jonathan Knowles:

- 🐧 Have fun in you work
- "The right drug for the right patient"

Streptococcus pneumoniae

7 instruments ABI 377

2

Bead Arrays

- September:
 - I was asked, with Pascal Mayer, to develop faster
 - sequencing
- October:

Heard of Bead Arrays: brilliant, but too complicated

Lynx Therapeutics' MegaClone Massively Parallel Signature Sequencing (**MPSS**) Gene Expression Profiling **Brenner, S**. *et al.*, Nature Biotechnology **18**:630-634 (2000)

3

Invention of PCR Colonies

FASTE

HEALTHCARE

4

O PCR colonies (Pascal's idea) - Coat a Ducleo Link - like surface with 2 primers - Apply diluted temptate DWA so that each molecule is N 5 pm appart. - Do a PCR reaction without minus in solution. The result should be spots of DNA amplified from one sequence each ; 11/12 ~ 11/15 elongate with wash + denature coat plate bind Dava paymente the DNA 15 with 2 miners now covalantly bound to plate (of theled hypordize denature elongate to second minon in himes SIV Janel. Read and understood: Signature: 15,11.46 13.11.96 Date: Date: asteris.com

A special day

Thus each spot of ANA will have been with one molecule only, which "walke PCR an philitation bac (uno Sorward walk The resulting "PCR colonies") would be coaled beads

13 November 1996: Invention of PCR Colonies and step-by-step sequencing

(Lanrunt's Idea) Step-by-step sequencing Using a single stranded molecule as temptate, with a sperific oligo as a primer, like for a normal sequencing reachin : - do a polymerization with only I type of uncleohide present in solution, wash - Detect presence of micropotated undertide(s) (by fluorecence for example) Repeat poly merization with next nucleopide type Repeat washing and detection. - continue the cycle with the 4 bases : Sequence with A wash /) wash + detect Seguence with C Sequence in the G & wash + defect wash (defect Sequence with T Thus on each step, only those colonies / buds which have the meorporated nucleoside will light For cares when the same base is repeated, sequence will be read with detection Sincles SW mature: Read and understood: 15.11.96 13.11.96 Date:

FASTE

Two patents filed

in situ Sequencing : Non-labelled primers

By X'Mas:
 Proof-of-principles
 1 April 1997:
 Two Patents filed

PCR Colonies project

GlaxoWellcome

1996-1997 GlaxoWellcome

Breakthrough Medicines For Everyday Living."

1998-2000 Serono

- 2001-2003 GenInEx / Manteia Predictive Medicine With your genome on CD you consult our database to predict response to treatment or risk of disease
 - Library preparation, including Y-shaped adapter (Laurent) and P5, P7 (Magne)
 - Instrument (Microscope and flow-cell)
 - Reverse terminator sequencing chemistry
 - Software for real-time DNA colonies detection and base-calling
- 2004-2006 Solexa & Lynx Therapeutics (\$4 M)
- 2007- illumina (\$600 M)

www.fasteris.com

2003, Fasteris

Everything started in a chalet...

Library Preparation Kit

HANANAKA ISANGA MATCITCCCAGGG IGAM ICAG Araaaracatgargatatticccagggitgagg Araaraacatgargatatticccagggitgaggi Araaaracatgargatatticccagggitgaggi Araaaracatgargatticccagggitgargitga Afaaracatgargatticccagggitgargitga TTAAGGGGGGGCATAAATGGACAC TRAGGGGGGCATAAATGGACAC ARACATGARGATATCTTCCCAGGGTTGAAGTCAG ARACATGARGATATCTTCCCAGGGTTGAAGTCAG IS THE REPORT OF T TRACCORDENCE TRACTOR CONTRACTOR ACATGAAGATATCTTCCCAGGGTTGAAGTCAG ACATGAAGATATCTTCCCAGGGTTGAAGTCAG ACCOUNTERED FOR CALE СА ТЕАНЕАТАТСТІСССЯ СО СТАВАЛО ТО ТО СА ТЕАНЕАТАТСТІСССЯ СО СТАВАЛО ТО АТТ СА ТЕАНЕАТАТСТІСССЯ СО СТАВАЛО ТО АТТТ СА ТЕАНЕАТАТСТІСССЯ СО СТАВАЛО ТО АТТТ ARGGGGGGGCATARATGGACAC AGGGGGGCA TRAATGGACAC AAGATATCTTCCCAGGGTTGAAGTCAGTT GAAGATA TCTTCCCAGGG TTGAAGTAAGATTT **AGGGCGACATABATGGACAC** RAGATATCTTCCCAGGGTTGAAGTCAGTTT TGARGATA TOTTCCCRGGGTTGRAGTCAGTTTTA GGGGGACATAAATGGACAC GARGATATCTTCCCAGGGTIGHRGICHGITIN GGGGGACATARTGGACAC Igargatatcttccagggtigargtcagttita Gargatatcttccagggtigargtcagttita Gargatatcttccagggtigargtcagttitagg gggacatartgartggacac Gargatatcttcccagggtigargtcagttitagg gggacatartggacac GRAGATA TOTTOCOR GGG TTGARG TORGTTTTARG GRAGATA TOTTOCOR GGG TTGARG TORGTTTTARG GGGACATAAATGGACA

Data analysis

www.fasteris.com

2007 installation run

- Staphylococcus aureus for HUG Genomic Laboratory
- $^{\ref{eq:selectric}}$ 8 lanes of 500'000 reads of 26 bases
- Difficult to analyze data:
 I had to use mySQL
 database to sort reads
- I could easier assemble genomes using EDENA than map on reference

NGS Pioneers

- We developed:
 - Genomes
 - de novo assembly of transcriptome
 - 🕈 ChIP-SEQ
 - Bar-coded small RNAs
- Insert profiles
- At the end of 2007, proud to be considered by illumina
 - First service lab to buy the machine
 - Smallest lab to use the technology
 - The lab that developed the broadest range of applications

Today applications

Medical diagnostics

Under Swiss law for genetics

Bestsellers

- Batches every 1-2 weeks
- Stable protocols, short TAT, lower cost, higher volumes

ion torrent

by *life* technologies

Personalized

- 1-2 batch per month
- Many options, partnership with researchers

Research

Developing new protocols

Second International Conference on Clinical Metagenomics (c) 2017, Fasteris SA

provider

12

Agilent Certified

Services Provider

Target Enrichment

Medical applications

Non-invasive prenatal test (NIPT)

2015: Re

2013: Whole genome

- Somatic Cancer Panels
- Germline Cancer Panels
- Preimplantation Diagnostic (PGD-A)
- 2017: Fasteris accreditation and genetics authorization

		EFR
Schwaizerische Eidnenossenschaft	Princeton and Middael de Finisiano PP1	ECO
Confederation suisse	Office fédéral de la santé publique OFSP	
Confederazione svizzera Confederazion svizze	Unité de direction Santé publique	
		ion : STS 0647
		012
Autorisation		N ISO 15189:2013
Deven Harden		Dr Laurent Farinelli
 Bases légales : loi fédérale du 8 octobre 2004 su 	ur l'analyse génétique humaine (LAGH, RS 810.12)	Gilles Matton
 ordonnance du 14 février 2007 s 	sur l'analyse génétique humaine (OAGH, RS 810.122.1)	22 794 22 23
		rent.farinelli@fasteris.com
L'Office fédéral de la santé publique	octroie aux	://www.fasteris.com
		10.2017
Ch. du Pont-du-Centenaire 1	09	10.2017 au 16.10.2022
1228 Plan-les-Ouates		w.sas.admin.ch ganismes accrédités)
l'autorisation d'effectue conformément à l'art	r des analyses cytogénétiques et moléculaires t. 3, let. b et c LAGH et à l'art. 11, al. 1 OAGH	
Les points suivants sont à observer		
 L'autorisation comprend, sur la cytogénétiques et moléculaires. 	base de l'art. 11, al. 1 OAGH, l'exècution de toutes les analyses	maine du diagnostic
 La direction est placée sous la Belfiore, Dr. rer. nat., tous deux 	r responsabilité de M. Frédéric Guerry, Dr. ès. sc., et M. Marco spécialistes FAMH en analyses de génétique médicale.	hodes d'essais, remarques rmes nationales
3. L'autorisation est valable jusqu'a	au 16 août 2022. La demande de renouvellement de l'autorisation	thodes internes)
doit être déposée auprès de l'Of pas transmissible. Les obligation	FSP au plus tard six mois avant son expiration. L'autorisation n'est is mentionnées aux art. 15 à 21 OAGH doivent être respectées.	S_NGS_S_HiSeq2500-RR- ndia (19208)
Office Hidden de la canté a tra		S_NGS_S_HiSeq-Run-
Section sécurité biologique et penet	due humaine	NGS S NextSeq-Prendia
		718)
TA		

enesupport

membre du réseau medisupport

Second International Conference on Clinical Metagenomics (c) 2017, Fasteris SA

www.fasteris.com

HEALTHCARE

Swiss Institute of Bioinformatics

19 October 2017

Second International Con

shows how this pest responds to a changing host environment. The T. urticae

15

2008 NGS Metagenomics

ARE

First metagenomics paper using illumina NGS?

- Genomic Research Laboratory University Hospital of Geneva
- Oral samples, amplicons of the 16S rRNA V5 variable region

	Journal of Microbiological Methods 79 (2009) 266–271 Contents lists available at ScienceDirect	a Journal "Michibilantica				
ELSEVIER	Journal of Microbiological Methods	Methods G	270	30000	V. Lazarevic et al. / Journal of Microbiological Methods 79 (2009) 266-271	
Metagenom	ic study of the oral microbiota by Illumina high-throughput s	sequencing		25000 20000 Puny 15000		
VIACIMII LAZAFE Magne Østerås ^a Genomic Research Labor ^b Josephine Bay Paul Cent ^c Fasteris, Ch. du Pont-du-	evic ^{Grovi} , Katrine Whiteson ^{Grovi} , Susan Huse [®] , David Hernandez [®] , Laurent Fari ^c , Jacques Schrenzel ^a , Patrice François ^a ratory, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva 14, Switzerland ter, Marine Biological Laboratory, Woods Hole, MA 02543, USA -Centenaire 109, Case postale 28, CH-1228 Plan-les-Ouates, Switzerland	nelli [°] ,		5000		

ARTICLE INFO

Article history: Received 11 September 2009 Accepted 14 September 2009 Available online 29 September 2009

Keywords: Metagenomics Oral cavity Flora composition Microbiome High-throughput sequencer

ABSTRACT

To date, metagenomic studies have relied on the utilization and analysis of reads obtained using 454 pyrosequencing to replace conventional Sanger sequencing. After extensively scanning the 165 ribosomal RNA (rRNA) gene, we identified the V5 hypervariable region as a short region providing reliable identification of bacterial sequences available in public databases such as the Human Oral Microbiome Database. We amplified samples from the oral cavity of three healthy individuals using primers covering an ~82-base segment of the V5 loop, and sequenced using the Illumina technology in a single orientation. We identified 135 genera or higher taxonomic ranks from the resulting 1,373,824 sequences. While the abundances of the most common phyla (*Firmicutes, Proteobacteria, Actinobacteria, Fusobacteria* and TM7) are largely comparable to previous studies, *Bacteroidetes* were less present. Potential sources for this difference include classification bias in this region of the 16S rRNA gene, human sample variation, sample preparation and primer bias. Using an Illumina sequencing approach, we achieved a much greater depth of coverage than previous oral microbiota studies, allowing us to identify several taxa not yet discovered in these types of samples and to assess that at least 30 000 additional reads would be required to identify only one additional reads would be additional or additional reads would be additional or additional ready much as would be active to a much several tax and to yet discovered in these types of samples were than the required to identify only one additional reads would be required to identify only one additional reads would be required to identify only one additional reads would be required to identify only one additional reads would be required to identify only one additional reads would be required to identify only one additional reads would be required to identify only one additional reads would be required to identify only one additional reads would be required to identify only one addition

Fig. 3. Rarefaction analysis of the oral metagenome. The curves include only sequences which occur 3 or more times. The number of OTUs with different cuto function of the number of sequences sampled. OTUs with \geq 97%, \geq 95% and \geq 90% pairwise sequence identity are arbitrarily assumed to form the same sprespectively.

Sequences sampled

600000

800000

200000

Fasteris SA

www.fasteris.com

1000000

Marie Beaume¹, Vladimir Lazarevic^{2†}, Thilo Köhler^{1†}, Nadia Gaïa², Oriol Manue John-David Aubert⁴, Loïc Baerlocher⁵, Laurent Farinelli⁵, Paola Gasche⁶, Jacques Schrenzel², Christian van Delden^{1*} and the Swiss Transplant Cohort S

¹ Transplant Infectious Diseases Unit, Geneva University Hospitals and Department of Microbiology and Mole University of Geneva, Geneva, Switzerland, ² Genomic Research Laboratory, Geneva University Hospitals, G Switzerland, ³ Infectious Diseases Service and Transplantation Center, Lausanne University Hospital Center, J Switzerland, Division of Pulmonary Diseases, Lausanne University Hospital Center, Lausar.nc, Switzerland, Plan-les-Ouates, Switzerland, ⁶ Division of Pulmonary Diseases, Geneva University Hospitals, Geneva, Switzerland,

19 Octc

signature and unc

Metagenomic study of the oral microbiota by methodology that Illumina high-throughput sequencing Keywords: gliobl

Vladimir Lazarevic ^a 1 , Katrine Whiteson ^a 1 , Susan Huse ^b, David Hernandez ^a, Laurent Farinelli^c, Magne Østerås^c, Jacques Schrenzel^a, Patrice François^a

16S V3 and V4 Amplicon Workflow

16S Metagenomic Sequencing Library Preparation

Preparing 16S Ribosomal RNA Gene Amplicons for the Illumina MiSeq System

1-step PCR Using primers with **long tags** (>60 nucleotides)

Advantage:

- Add the entire illumina	a adapter sequence								
in one step.									

Sequence

Inconvenient:

- Long primers

Expensive and significant impact on amplification efficiency

2-steps PCR

1st step with primers with medium tag (30 nt)

2nd step with illumina primers

Advantage:- Only one primer pair needed for 1st step.Inconvenient:- 2 PCR reactions needed

Libraries with low complexity

All inserts in the same orientation with similar sequences => Impact on sequence quality

Step 1: PCR using primers with short tags

Step 2: Normalization and pooling

Step 3: End-repair, A-tailing and TruSeq adapter ligation

	Tags
1	NNAACCGT
2	NNCGATGT
3	NNNGTGAGC
4	NNNTCCGCT
5	NNNNACAGTG
6	NNNNCTTGTA
7	NNGACTCT
8	NNTGACCA
9	NNNATCACG
10	NNNCCGGAG
11	NNNNGGCTAC
12	NNNNTAGCTT
13	NNACTTGA
14	NNCAGATC
15	NNNGGTATA
16	NNNTTTAGG
1/	NNNNAGAAGA
18	NNNNGATCAG
19	NNTTGTTC
20	NNATTCGC
21	NNNCGTTAA
22	NNNGAGGAT
25	NNNN'T'I'AGGC
24	NNNNGCCAAT

19 October 2017

- Standard library preparation (Nano)
- Standard without PCR
- MetaFast (modified end-repair)

≈ 10% chimera

FAST

HEALTHCAR

- ≈ 1% chimera
- ≈ 0.1% chimera

Samples 1 – 8, Fwd Tag

	TagF1		TagF2		TagF3		TagF4		TagF5		TagF6		TagF7		TagF8	
TagR1	90.44	99.76	1.61	0.04	0.89	0.02	1.37	0.06	1.79	0.02	1.49	0.03	1.1	0.02	1.32	0.05
TagR2	1.24	0.03 (90.51	99.8	1.1	0.02	1.44	0.05	2.08	0.03	1.21	0.03	0.96	0.01	1.45	0.03
TagR3	1.13	0.03	1.62	0.02	90.16	99.82	1.61	0.04	1.82	0.02	1.24	0.04	0.96	0.02	1.46	0.02
TagR4	0.83	0.01	1	0.01	0.83	_0	93.39	99.92	1.42	0.03	0.85	0.01	0.68	0	0.99	0.01
TagR5	1.03	0.03	1.47	0.02	0.92	0.01	1.42	0.04	91.69	99.83	1.05	0.02	0.83	0.02	1.6	0.03
TagR6	1.47	0.04	1.28	0.02	0.87	0.02	1.32	0.07	1.64	0.04	90.88	99.71	1.2	0.07	1.32	0.04
TagR7	1.72	0.03	1.7	0.02	1.22	0.02	1.59	0.05	2.06	0.03	1.78	0.04	88.01	99.75	1.94	0.06
TagR8	1.16	0.04	1.64	0.03	0.96	0.02	1.54	0.04	2.36	0.02	1.32	0.03	1.19	0.01	89.84	99.82

With 5 cycles PCR

MetaFast (no PCR)

Rev Tags Found

Advantages of MetaFast

Optimized pipeline for large number of samples Large number of PCRs can be pooled to prepare a single illumina library

Minimized **quality**

- Short tags on primers:
 Very low incidence on amplification efficiency
- Insert present in both forward and reverse orientation: Increases sequence variability
- Reduced chimera

- When looking at the last 10 years, we can clearly speak of a revolution
- Speed and cost

Future of NGS and Metagenomics

23

Tremendous speed increase

Future of NGS

- Speed and cost
- It's becoming cheaper to generate data than to store it
- We see now incredible growth in medicine
- Challenges as well, in particular for
 - Quality and Validation of data, CE-IVD, accreditation
 - Trend for automatized "For Diagnostics" systems
 => Importance of analysis

www.fasteris.com

IBM Watson for Genomics helps doctors give patients new hope.

Now clinicians across the U.S. can provide precision medicine to cancer patients. See how Watson for Genomics helps enhance doctors' confidence in personalized treatment approaches.

Changing role for doctors, who cannot know everything

- Partnership with patients
- Importance of Human experience
- Screening everywhere?
 => What about the right of NOT knowing?

It is our responsibility to apply this technology for the good of humankind and not for profit

Future of Metagenomics

- We are discovering new universes
- We are discovering how bacteria manipulate us
- ¹ It is just the beginning, many surprises can be expected
- More data and longer reads, in complement to other information, will help us to understand microbial communities, to improve
 - Environment, Food, Well-being, ..
 - ..and Health, through the clinical applications that we'll hear about during ICCMg2 !
- When will we be able to manipulate sustainably microbial communities?

Fasteris team

Diagnostics / FAMH Frédéric GUERRY (AUR) Marco BELFIORE (MCL) Fabien MURISIER (FER)

Sanger Sequencing Anne SCHOENDORF Chloé HOT Christophe BUSER

NGS Production Cécile DELUEN SAGNE

Christelle BARRAS Elisabeth DIETERLE Cristel BUSCA Franz PELEGRIN Sonia PERREIRA Vianney FRIGARD Fanny JOLY

Development Marta COTADO Pauline CHARRUAU

Research Nadine VINCENT Magne OSTERAS **Bioinformatics & IT** Loïc BAERLOCHER Gérald BLANC Manuele CASTELNUOVO Nicolas GONZALEZ Patricia OTTEN

Sales & Marketing Axel STRITTMATTER François ALLER Svetlana SKARUPELOVA Aneliya ETROPLOSKA

Quality Gilles MATTON Benoît WINIGER

Administration Laurent FARINELLI Isabelle LOROLE

Founders Laurent FARINELLI Magne OSTERAS

19 October 2017