Virus transmission during kidney transplantation assessed by virome analysis of living donor and recipient

P Schreiber, V Kufner, K Hübel, O Zagordi, S Schmutz, C Bayard, M Greiner, A Zbinden, R Capaul, J Böni, T Müller, N Mueller, A Trkola, M Huber
Solid organ transplantation and transmission of viruses

Routine screening prior to living donor kidney transplantation

Serology
- HIV 1/2
- HTLV I/II
- Hepatitis A/B/C/E
- HSV, CMV, EBV
- Measles, Mumps

PCR
- Hepatitis B/C

Little is known about other untested, apathogenic viruses a donor might carry and likely will transmit
Kidney transplant living donor/recipient pairs

Sampling

- University Hospital Zurich
- Enrollment of donor/recipient pairs since August 2014

- Each sampling consists of:
 - Blood
 - Urine
 - Stool

<table>
<thead>
<tr>
<th>Recipient</th>
<th>Donor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling 1</td>
<td>Sampling 1</td>
</tr>
<tr>
<td>n = 30</td>
<td>time of transplant</td>
</tr>
<tr>
<td>Sampling 2</td>
<td></td>
</tr>
<tr>
<td>n = 30</td>
<td>4-6 weeks post-transplant</td>
</tr>
<tr>
<td>Sampling 3</td>
<td></td>
</tr>
<tr>
<td>n = 25</td>
<td>1 year post-transplant</td>
</tr>
</tbody>
</table>
Kidney transplant living donor/recipient pairs

Evaluated symptoms

- Immunosuppressive therapy
- Antiinfective prophylaxis
VirMet: a set of tools for viral metagenomics

VirMet is a software suite designed to help users running viral metagenomics experiments: unspecific massively parallel sequencing with the aim of discovering and characterizing the virus fraction of biological samples.

Virmet is now called with a command subcommand syntax: `virmet fetch --viral n`, for example, downloads the viral nucleotide database. Other available subcommands so far are:

- `fetch`: download genomes
- `update`: update viral/bacterial database
- `index`: index genomes
- `wolfpack`: analyze a Miseq run
- `covplot`: plot coverage for a specific organism

A short help is obtained with `virmet <subcommand> -h`.

Further detail following the menu on the left.

Viral metagenomic sequencing

Methods

- Centrifugation
- Filtration (0.45 µm)
- Storage - 80°C
- Nuclease treatment
- Nucleic acid extraction EasyMAG system
- RNA
- cDNA synthesis
- 2nd strand synthesis
- Anchor PCR
- Library preparation Nextera XT
- Sequencing Illumina MiSeq
- Data analysis VirMet pipeline

Random, Anchored Amplification

- read length 150 bp
- ~ 3-5 Mio. reads/sample

VirMet: a set of tools for viral metagenomics

Lewandowska et al., Microbiome, 2017
Metagenomic sequencing detected BKPyV, JCPyV, HPV and TTV in blood and urine samples of donors and recipients (set 1)
TT viral loads increased in kidney transplant recipients under immunosuppression

- Lewandowska et al., 2017
- Young et al., 2015
- Görzer et al., 2015
- Görzer et al., 2014
- Jones et al., 2005
- Maggi et al., 2003
Metagenomic sequencing detected BKPyV, JCPyV, HPV and TTV in blood and urine samples of donors and recipients (set 1).

Suggested transmission of JCPyV from donors to recipients.
Sequence-specific qPCR confirmed metagenomic sequencing results (set 1)

Confirmed sequencing results but also detected additional cases
Sequence-specific qPCR identified cases of possible virus transmission (set 2)

Revealed 2 additional cases of JCPyV transmission from donor to recipient
Suggested transmission of JCPyV from donors to recipients in 7 cases
Confirmed transmission of JCPyV from donors to recipients in 6 out of 7 cases
• Metagenomic sequencing detected BKPyV, JCPyV, HPV and TTV (no other viruses were detected)

• Sequence-specific qPCR detected additional cases of BK-/JCPyV

• Phylogenetic analysis confirmed transmission of JCPyV from kidney transplant donors to recipients in 6 out of 7 cases

• TTV was detected by metagenomic sequencing and viral loads increased in kidney transplant patients under immunosuppression (qPCR)

• The role of JCPyV infection after renal transplantation is so far poorly defined

• Further studies are needed to define the impact of the donor’s virome on the recipient and predict transplant outcomes
Acknowledgements

Institute of Medical Virology, UZH
Prof. Dr. Alexandra Trkola
Dr. Michael Huber
Dr. Osvaldo Zagordi
Stefan Schmutz
PD Dr. Jürg Böni
Dr. med. Andrea Zbinden
Dr. Riccarda Capaul

Division of Infectious Diseases and Hospital Epidemiology, USZ
Prof. Dr. med. Nicolas Müller
Dr. med. Peter Schreiber
Dr. med. Michael Greiner
Dr. med. Cornelia Bayard

Department of Nephrology, USZ
Prof. Dr. med. Thomas Müller
Dr. med. Kerstin Hübel

Thanks to the committee for the ICCMg/SSM prize!

Thank you for your attention!

Funding
Clinical Research Priority Program (CRPP)
Viral Infectious Diseases
www.viralinfectiousdiseases.uzh.ch