Clinical Metagenomics in Bone and Joint Infections

Robin Patel, M.D.
Professor of Medicine and Microbiology
Mayo Clinic College of Medicine
patel.robin@mayo.edu
Bone and Joint Infections: Proof of Concept Study

(≥1 pg/μL bacterial DNA, <99% human DNA)

<table>
<thead>
<tr>
<th>Patient</th>
<th>Samples</th>
<th>Age</th>
<th>Gender</th>
<th>Post-operative infection (type of surgery)</th>
<th>Delay between surgery and infection</th>
<th>Body site</th>
<th>Material involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>51</td>
<td>M</td>
<td>Yes (material)</td>
<td><1 month</td>
<td>Ankle</td>
<td>Osteosynthesis</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>50</td>
<td>F</td>
<td>No</td>
<td></td>
<td>Clavicle</td>
<td>None</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>54</td>
<td>M</td>
<td>Yes (material)</td>
<td><1 month</td>
<td>Toe</td>
<td>Osteosynthesis</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>66</td>
<td>M</td>
<td>Yes (material)</td>
<td>1 and 3 months</td>
<td>Tibia</td>
<td>Osteosynthesis</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>61</td>
<td>F</td>
<td>Yes (material)</td>
<td><1 month</td>
<td>Knee</td>
<td>Total knee prothesis</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>63</td>
<td>M</td>
<td>Yes (material)</td>
<td><1 month</td>
<td>Mandible</td>
<td>Osteosynthesis</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>69</td>
<td>M</td>
<td>Yes (bone resection)</td>
<td></td>
<td>Tibia</td>
<td>None</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>64</td>
<td>F</td>
<td>No</td>
<td></td>
<td>Sacrum</td>
<td>None</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>86</td>
<td>F</td>
<td>Yes (material)</td>
<td>1 and 3 months</td>
<td>Knee</td>
<td>Total knee prothesis</td>
</tr>
<tr>
<td>J</td>
<td>2</td>
<td>50</td>
<td>F</td>
<td>No</td>
<td></td>
<td>Tibia</td>
<td>None</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>86</td>
<td>F</td>
<td>No</td>
<td>>3 months</td>
<td>Knee</td>
<td>Osteosynthesis</td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td>51</td>
<td>M</td>
<td>Yes (material)</td>
<td>>3 months</td>
<td>Tibia</td>
<td>Osteosynthesis</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>87</td>
<td>F</td>
<td>Yes (material)</td>
<td><1 month</td>
<td>Knee</td>
<td>Total knee prothesis</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>60</td>
<td>M</td>
<td>No</td>
<td></td>
<td>Greater trochanter and ischium</td>
<td>None</td>
</tr>
</tbody>
</table>

Proportions of Species Recovered In Culture and From Reads (Metaphlan2)

Monomicrobial samples by culture (n = 8)
Presence of pathogen confirmed by metagenomics

Polymicrobial samples by culture (n = 16)
32/55 (58%) found species level, 41/55 (75%) genus level
#Species Found By Culture and Metagenomic Sequencing

Additional 273 bacteria found
182 possible pathogens
91 contaminants

<table>
<thead>
<tr>
<th>Prosthetic Joint Infection Microbiology</th>
<th>Hip and Knee</th>
<th>Hip</th>
<th>Knee</th>
<th>Shoulder</th>
<th>Elbow</th>
</tr>
</thead>
<tbody>
<tr>
<td>All time periods</td>
<td>2435</td>
<td>637</td>
<td>1979</td>
<td>1427</td>
<td>199</td>
</tr>
<tr>
<td>Number of joints</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>27</td>
<td>38</td>
<td>13</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>Coagulase negative staphylococci</td>
<td>27</td>
<td>22</td>
<td>30</td>
<td>23</td>
<td>41</td>
</tr>
<tr>
<td>Streptococcus species</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Enterococcus species</td>
<td>3</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Aerobic gram negative bacilli</td>
<td>9</td>
<td>24</td>
<td>7</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Anaerobic bacteria</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cutibacterium acnes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Other anaerobes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Culture negative</td>
<td>14</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Polymicrobial</td>
<td>15</td>
<td>31</td>
<td>14</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2017 Mayo Foundation for Medical Education and Research
Staphylococcus epidermidis Biofilm on Polycarbonate Coupons
Scanning Electron Microscopy
Current Orthopedic Implant Processing - Mayo Clinic

400 ml Ringer’s Solution Added

Prosthesis Placed in Container (Operating Room)

Plating

Aspiration

Centrifuge 5 min

Vortex 30 sec

Sonicate 5 min

© 2017 Mayo Foundation for Medical Education and Research
Comparison of Sonicate Fluid and Tissue Culture Diagnosis of Orthopedic Foreign Body Infection

<table>
<thead>
<tr>
<th>Implant type</th>
<th>Sensitivity</th>
<th>Periimplant tissue</th>
<th>p value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hip/knee arthroplasties</td>
<td>Sensitivity</td>
<td>79%</td>
<td>61%</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>99%</td>
<td>99%</td>
<td>Trampuz et al, NEJM 2007 Vol 357:654</td>
</tr>
<tr>
<td>Shoulder arthroplasties</td>
<td>Sensitivity</td>
<td>67%</td>
<td>55%</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>98%</td>
<td>95%</td>
<td>Piper et al, JCM 2009 Vol 47:1878</td>
</tr>
<tr>
<td>Spine implants</td>
<td>Sensitivity</td>
<td>91%</td>
<td>73%</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>97%</td>
<td>93%</td>
<td>Sampedro et al, Spine 2010 Vol 25:1218</td>
</tr>
<tr>
<td>Elbow arthroplasties</td>
<td>Sensitivity</td>
<td>89%</td>
<td>55%</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>100%</td>
<td>93%</td>
<td>Vergidis et al, JSES 2011 Vol 20;1275</td>
</tr>
<tr>
<td>Hip/knee/shoulder arthroplasties, mega-prostheses, osteosyntheses, spine implants</td>
<td>Sensitivity</td>
<td>83%</td>
<td>61%</td>
<td>0.034</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>95%</td>
<td>95%</td>
<td>Holinka et al. J Orthop Res 2011 Vol 29:617</td>
</tr>
<tr>
<td>Hip arthroplasties</td>
<td>Sensitivity</td>
<td>75%</td>
<td>69%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>97%</td>
<td>100%</td>
<td>Bogut et al. Polish J Microbiol 2014:63:299</td>
</tr>
<tr>
<td>Hip/knee arthroplastises, internal device</td>
<td>Sensitivity</td>
<td>77%</td>
<td>34%</td>
<td><0.002</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>97%</td>
<td>100%</td>
<td>Scorzolini et al. New Microbiol 2014:37:321</td>
</tr>
<tr>
<td>Fracture fixation implant (plate, screws, spine implant, intramedullary nail)</td>
<td>Sensitivity</td>
<td>90%</td>
<td>57%</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>91%</td>
<td>96%</td>
<td>Yano et al. J Clin Microbiol 2014;52:4176</td>
</tr>
<tr>
<td>Hip/knee arthroplastises, tibial inserts, acetabular components, fixation devices, spinal devices, etc.</td>
<td>Sensitivity</td>
<td>90%</td>
<td>67%</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>99%</td>
<td>99.5%</td>
<td>Puig-Verdie et al. Bone Joint J 2013;95-B(2):244-9</td>
</tr>
<tr>
<td>Hip/knee/shoulder/elbow arthroplasties</td>
<td>Sensitivity</td>
<td>81%</td>
<td>61%</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>99%</td>
<td>100%</td>
<td>Portillo et al. J Infect 2014:69:35e41</td>
</tr>
<tr>
<td>Hip/knee arthroplastises</td>
<td>Sensitivity</td>
<td>97%</td>
<td>70%</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>90%</td>
<td>97%</td>
<td>Rothenberg et al. Clin Orthop Relat Res 2017;475:1827</td>
</tr>
<tr>
<td>Modular megaprostheses</td>
<td>Sensitivity</td>
<td>91%</td>
<td>52%</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>100%</td>
<td>100%</td>
<td>Puchner et al. J Orthop Res 2016</td>
</tr>
<tr>
<td>Test</td>
<td>Sensitivity 135 PJI</td>
<td>Specificity 231 Aseptic Failure</td>
<td>Accuracy</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>--------------------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% (95% Confidence Interval)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tissue culture</td>
<td>70.4 (64.5-76.3)</td>
<td>98.7 (97.2-100)</td>
<td>88.3 (84.2-92.4)</td>
<td></td>
</tr>
<tr>
<td>Sonicate fluid culture</td>
<td>72.6 (66.8-78.4)</td>
<td>98.3 (96.6-100)</td>
<td>88.8 (84.7-92.9)</td>
<td></td>
</tr>
<tr>
<td>Sonicate fluid broad-range PCR</td>
<td>70.4 (64.5-76.3)</td>
<td>97.8 (95.9-99.7)</td>
<td>87.7 (83.5-91.9)</td>
<td></td>
</tr>
<tr>
<td>Combination of two tests above</td>
<td>83.0 (78.2-87.8)</td>
<td>95.7 (93.1-98.3)</td>
<td>91.0 (87.3-94.7)</td>
<td></td>
</tr>
<tr>
<td>Sonicate fluid culture plus PCR</td>
<td>78.5 (73.2-83.8)</td>
<td>97.0 (94.8-99.2)</td>
<td>90.2 (86.4-94.0)</td>
<td></td>
</tr>
<tr>
<td>Synovial fluid culture</td>
<td>64.7 (56.5-72.9)</td>
<td>96.9 (93.9-99.9)</td>
<td>84.1 (77.8-90.4)</td>
<td></td>
</tr>
<tr>
<td>Sonicate fluid PCR - lower cutoff (CP <27.59 cycles)</td>
<td>80.0 (74.8-85.2)</td>
<td>90.9 (87.2-94.6)</td>
<td>86.8 (82.5-91.3)</td>
<td></td>
</tr>
</tbody>
</table>
Sonication Studies – PJI PCR Panel

Hip/Knee Prostheses

<table>
<thead>
<tr>
<th>Test</th>
<th>Aseptic failure (290)</th>
<th>PJI (144)</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of patients with positive specimens</td>
<td>% (95% confidence interval)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synovial-fluid culture</td>
<td></td>
<td>5/161</td>
<td>59/89</td>
<td>66.3 (55.5-76.0)</td>
<td>96.9 (92.9-99.0)</td>
<td>92.2 (82.7-97.4)</td>
</tr>
<tr>
<td>Tissue culture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any growth</td>
<td></td>
<td>45</td>
<td>119</td>
<td>82.6 (75.4-88.4)</td>
<td>84.5 (79.8-88.5)</td>
<td>72.6 (65.1-79.2)</td>
</tr>
<tr>
<td>≥2 positive tissues (same organism)</td>
<td></td>
<td>6</td>
<td>101</td>
<td>70.1 (62.0-77.5)</td>
<td>97.9 (95.6-99.2)</td>
<td>94.4 (88.2-97.9)</td>
</tr>
<tr>
<td>Sonicate fluid culture</td>
<td></td>
<td>5</td>
<td>105</td>
<td>72.9 (64.9-80.0)</td>
<td>98.3 (96.0-99.4)</td>
<td>95.5 (89.7-98.5)</td>
</tr>
<tr>
<td>Sonicate fluid PCR (10 assay panel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any positive result</td>
<td></td>
<td>6</td>
<td>111</td>
<td>77.1 (69.3-83.7)</td>
<td>97.9 (95.6-99.2)</td>
<td>94.9 (89.2-98.1)</td>
</tr>
<tr>
<td>Staphylococcus sp</td>
<td></td>
<td>2</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. aureus</td>
<td></td>
<td>0</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coagulase-negative staphylococci</td>
<td></td>
<td>2</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus sp</td>
<td></td>
<td>3</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococcus/Granulicatella/Abiotrophia sp</td>
<td></td>
<td>0</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td></td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gram-positive anaerobic cocci</td>
<td></td>
<td>0</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutibacterium sp</td>
<td></td>
<td>0</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td></td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium sp</td>
<td></td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. jeikium/urealyticum</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-jeikeium sp</td>
<td></td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteus sp</td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. fragilis group</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Metagenomic Shotgun Whole Genome Sequencing

Sequence ALL DNA present using short 150-300 bp reads
Evaluation of Arthroplasty Failure Using Metagenomic Whole Genome Shotgun Sequencing

• Goals:
 • **Improve sensitivity**
 • Difficult to culture organisms
 • Fastidious organisms
 • Recent antibiotic exposure
 • Polymicrobial infections
 • Identify subpopulations within species
 • Identify important genes
 • Antibiotic resistance markers
 • Virulence factors

© 2017 Mayo Foundation for Medical Education and Research
Comparison of Microbial Enrichment Methods
Metagenomic Analysis of Arthroplasty Failure

DNA Extraction

NEBNext Microbiome DNA Enrichment

DNA Extraction

DNA for Next Generation Sequencing

© 2017 Mayo Foundation for Medical Education and Research

Comparison of Microbial Enrichment Methods
Metagenomic Analysis of Arthroplasty Failure

• DNA extraction: Mobio BIOstic Bacteremia DNA isolation kit
• Whole genome amplification: Illustra GenomiPhhi V2 kit
• Amplified DNA purification: Agencourt AMPure XP beads
• Paired-end library prep: NEBNext Ultra DNA Library Prep Kit
• Sequencing: Illumina HiSeq 2500 in rapid run mode with 2 x 250 bp reads (multiplexed 6 up to samples/lane)
• Adapter sequence removal: Trimmomatic (v0.35)
• Human & PhiX sequence removal: BioBloom tools (v2.0.12)
• Data analysis: Livermore Metagenomics Analysis Toolkit (LMAT) with kML + Human.v4.14.20.g10.db database
Comparison of Microbial Enrichment Methods
Metagenomic Analysis of Arthroplasty Failure

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>No Enrichment</th>
<th>NEBNext Microbiome DNA Enrichment</th>
<th>MolYsis Enrichment</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus PJI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of reads</td>
<td>0.02%</td>
<td>0.2%</td>
<td>7.7%</td>
</tr>
<tr>
<td>(4,158 of 25,609,460)</td>
<td>(350,625 of 169,981,133)</td>
<td>(2,286,890 of 29,530,730)</td>
<td></td>
</tr>
<tr>
<td>Enrichment factor</td>
<td></td>
<td>13X</td>
<td>481X</td>
</tr>
<tr>
<td>S. epidermidis PJI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of reads</td>
<td>0.007%</td>
<td>0.2%</td>
<td>7.0%</td>
</tr>
<tr>
<td>(1,682 of 23,606,476)</td>
<td>(133,680 of 74,544,475)</td>
<td>(2,268,087 of 32,184,381)</td>
<td></td>
</tr>
<tr>
<td>Enrichment factor</td>
<td></td>
<td>25X</td>
<td>986X</td>
</tr>
<tr>
<td>E. faecalis PJI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of reads</td>
<td>0.006%</td>
<td>0.5%</td>
<td>59.4%</td>
</tr>
<tr>
<td>(1,671 of 26,949,030)</td>
<td>(497,206 of 94,522,959)</td>
<td>(16,407,878 of 27,643,294)</td>
<td></td>
</tr>
<tr>
<td>Enrichment factor</td>
<td></td>
<td>85X</td>
<td>9,580X</td>
</tr>
<tr>
<td>Read Score</td>
<td># of Reads</td>
<td>TaxID</td>
<td>Taxonomy group</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>8.14E+07</td>
<td>4</td>
<td>9606</td>
<td>species, Homo sapiens</td>
</tr>
<tr>
<td>807585</td>
<td>1210368</td>
<td>2759</td>
<td>superkingdom, Euukarya</td>
</tr>
<tr>
<td>611285</td>
<td>342132</td>
<td>3263</td>
<td>species, synthetic construct</td>
</tr>
<tr>
<td>580565</td>
<td>336338</td>
<td>1280</td>
<td>species, Staphylococcus aureus</td>
</tr>
<tr>
<td>268536</td>
<td>481220</td>
<td>13156</td>
<td>no rank, cellular organisms</td>
</tr>
<tr>
<td>15809</td>
<td>10833</td>
<td>1279</td>
<td>genus, Staphylococcus</td>
</tr>
<tr>
<td>13898.3</td>
<td>18574</td>
<td>1 depth=0, taxid=1, entries=1</td>
<td>genus, Staphylococcus</td>
</tr>
<tr>
<td>13530.1</td>
<td>9200</td>
<td>286</td>
<td>genus, Pseudomonas</td>
</tr>
<tr>
<td>2688.34</td>
<td>2762</td>
<td>136843</td>
<td>species group, Pseudomonas fluorescens</td>
</tr>
<tr>
<td>1816.09</td>
<td>1388</td>
<td>115698</td>
<td>no rank, Staphylococcus aureus</td>
</tr>
<tr>
<td>1561.25</td>
<td>959</td>
<td>90964</td>
<td>family, Staphylococcaceae</td>
</tr>
<tr>
<td>1318.53</td>
<td>776</td>
<td>1743</td>
<td>genus, Propionibacterium</td>
</tr>
<tr>
<td>1236.36</td>
<td>1069</td>
<td>10003441</td>
<td>species, Staphylococcus aureus</td>
</tr>
<tr>
<td>1226.75</td>
<td>1799</td>
<td>294</td>
<td>species, Pseudomonas fluorescens</td>
</tr>
<tr>
<td>1029.9</td>
<td>1597</td>
<td>1290376</td>
<td>no rank, Amycolatopsis vancomycina DSM 44592</td>
</tr>
<tr>
<td>923.909</td>
<td>719</td>
<td>10003448</td>
<td>species, Staphylococcus aureus</td>
</tr>
<tr>
<td>645.914</td>
<td>403</td>
<td>463794</td>
<td>no rank, Pseudomonas fluorescens</td>
</tr>
<tr>
<td>564.94</td>
<td>561</td>
<td>613</td>
<td>genus, Serratia</td>
</tr>
<tr>
<td>462.127</td>
<td>1310</td>
<td>2 superkingdom, Bacterium</td>
<td></td>
</tr>
<tr>
<td>408.322</td>
<td>283</td>
<td>1197727</td>
<td>species, Pseudomonas</td>
</tr>
<tr>
<td>256.031</td>
<td>204</td>
<td>1284392</td>
<td>species, Pseudomonas</td>
</tr>
<tr>
<td>230.898</td>
<td>154</td>
<td>543</td>
<td>family, Staphylococcaceae</td>
</tr>
<tr>
<td>217.701</td>
<td>156</td>
<td>10003454</td>
<td>species, Staphylococcus aureus</td>
</tr>
<tr>
<td>203.746</td>
<td>204</td>
<td>317</td>
<td>species, Pseudomonas syringae</td>
</tr>
<tr>
<td>196.998</td>
<td>215</td>
<td>1239</td>
<td>genus, Firmicutes</td>
</tr>
<tr>
<td>181.019</td>
<td>146</td>
<td>688</td>
<td>species, Torque teno virus</td>
</tr>
<tr>
<td>178.088</td>
<td>112</td>
<td>1206777</td>
<td>species, Pseudomonas</td>
</tr>
<tr>
<td>154.956</td>
<td>184</td>
<td>116396</td>
<td>family, Pseudomonadaceae</td>
</tr>
<tr>
<td>144.54</td>
<td>125</td>
<td>135621</td>
<td>family, Pseudomonadaceae</td>
</tr>
<tr>
<td>112.687</td>
<td>87</td>
<td>99158</td>
<td>species, Hormonadi hammodi</td>
</tr>
<tr>
<td>109.857</td>
<td>84</td>
<td>1240676</td>
<td>species, Pseudomonas</td>
</tr>
<tr>
<td>94.634</td>
<td>63</td>
<td>1301</td>
<td>genus, Streptococcus</td>
</tr>
<tr>
<td>93.5661</td>
<td>55</td>
<td>1248438</td>
<td>no rank, Pseudomonas</td>
</tr>
<tr>
<td>91.8243</td>
<td>74</td>
<td>80865</td>
<td>genus, Delfta</td>
</tr>
<tr>
<td>86.2212</td>
<td>81</td>
<td>308865</td>
<td>genus, Elizbethkingia</td>
</tr>
<tr>
<td>77.866</td>
<td>45</td>
<td>93846</td>
<td>species, Staphylococcus</td>
</tr>
<tr>
<td>74.2086</td>
<td>46</td>
<td>53335</td>
<td>genus, Pantocea</td>
</tr>
<tr>
<td>69.9358</td>
<td>45</td>
<td>91459</td>
<td>species, Methylobacterium</td>
</tr>
</tbody>
</table>

S. aureus PJI

No Enrichment

NEBNext Enrichment

Molyysis Enrichment

Read Score | **# of Reads** | **TaxID** | **Taxonomy group** | **Organism** | **Rank**
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.21E+06</td>
<td>7</td>
<td>1280</td>
<td>species, Staphylococcus aureus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.26E+06</td>
<td>7</td>
<td>9606</td>
<td>species, Homo sapiens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>193781</td>
<td>215573</td>
<td>2759</td>
<td>superkingdom, Euukarya</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96085.8</td>
<td>71730</td>
<td>1279</td>
<td>genus, Staphylococcus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>866445</td>
<td>93461</td>
<td>131567</td>
<td>no rank, cellular organisms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17892.4</td>
<td>15986</td>
<td>1156998</td>
<td>no rank, Staphylococcus aureus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4970.16</td>
<td>16386</td>
<td>90964</td>
<td>family, Staphylococcaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1074494</td>
<td>219358</td>
<td>877206</td>
<td>species, Staphylococcus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>372.719</td>
<td>290</td>
<td>10003425</td>
<td>species, Staphylococcus aureus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>307.861</td>
<td>198</td>
<td>286</td>
<td>genus, Pseudomonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.233</td>
<td>175</td>
<td>688</td>
<td>species, Torque teno virus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.236</td>
<td>504</td>
<td>1385</td>
<td>order, Bacillales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.5046</td>
<td>91</td>
<td>10003460</td>
<td>species, Staphylococcus aureus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77.8404</td>
<td>173</td>
<td>9106</td>
<td>class, Bacilli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.2773</td>
<td>45</td>
<td>308865</td>
<td>genus, Elizabethkingia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.1012</td>
<td>71</td>
<td>1282</td>
<td>species, Staphylococcus epidermidis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.4741</td>
<td>40</td>
<td>1301</td>
<td>genus, Streptococcus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.0756</td>
<td>22</td>
<td>1743</td>
<td>genus, Propionibacterium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.3186</td>
<td>24</td>
<td>1248436</td>
<td>no rank, Pseudomonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.2731</td>
<td>18</td>
<td>136841</td>
<td>group, Pseudomonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.6249</td>
<td>18</td>
<td>139037</td>
<td>organ, EGD-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Host DNA Depletion Depletes DNA Quantities for Sequencing

Vortex + Sonication

MolYsis Human Cell Lysis

DNA Extraction

Data Analysis
- Identify pathogens
- Antibiotic resistance genes
- Subpopulations

Next Generation Sequencing (HiSeq 2500, 2 x 250bp)

Whole Genome Amplification

© 2017 Mayo Foundation for Medical Education and Research
Impact of Contaminating DNA in Whole Genome Amplification Kits on PJI Diagnosis

- 8 sonicate fluids, including culture-positive and –negative PJI, and aseptic failure
- Microbial DNA enrichment: MolYsis Basic5 kit
- DNA extraction: MoBio Bacteremia DNA isolation kit
- Whole genome amplification:
 1. Qiagen REPLI-g Single Cell kit (Qiagen, Hilden Germany)
 2. Illustra V2 Genomiphi kit (GE Healthcare Bio-Sciences, Pittsburgh PA)
 3. Illustra Single Cell Genomiphi kit
- Amplified DNA purification: Agencourt AMPure XP beads
- Paired-end library preparation: NEBNext Ultra DNA Library Prep Kit
- Sequencing: Illumina HiSeq 2500 rapid run mode, 2x250 bp reads (multiplexed 6 samples/lane)
- Controls (no WGA) - library preparation with NEBnext Ultra II DNA library Prep Kit (4 samples/lane)
- Illumina adapters removal: Trimmomatic
- Human and PhiX sequences prefiltration: BioBloom tools
- Taxonomic assignment of reads: LMAT with kML + Human.v4.14.20.g10.db database
- Trimming of low-quality reads: Trimmomatic
- Analysis of trimmed reads: MetaPhlAn2

Sonicate Fluid Samples Tested and Relative Read Counts (LMAT)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Site</th>
<th>Microbiology</th>
<th>Qiagen REPLI-g</th>
<th>Illustra Single Cell</th>
<th>Illustra V2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total reads</td>
<td>Total reads</td>
<td>Total reads</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sonicate Fluid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Positive tissue cultures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pathogen reads</td>
<td>Non-pathogen reads</td>
<td>Pathogen reads</td>
<td>Non-pathogen reads</td>
</tr>
</tbody>
</table>

Culture-positive PJI

<table>
<thead>
<tr>
<th>Sample</th>
<th>Site</th>
<th>Microbiology</th>
<th>Qiagen REPLI-g</th>
<th>Illustra Single Cell</th>
<th>Illustra V2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total reads</td>
<td>Total reads</td>
<td>Total reads</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

980 H
- **Group C Streptococcus**<20 CFUs
 - 1 of 3
 - Total reads: 27,244,012
 - Pathogen reads: 2,694,906
 - Non-pathogen reads: 103
 - Total reads: 36,576,986
 - Pathogen reads: 286,577
 - Non-pathogen reads: 556
 - Total reads: 25,754,214
 - Pathogen reads: 3,075,181
 - Non-pathogen reads: 566

982 K
- **S. epidermidis**>100 CFUs
 - 3 of 4
 - Total reads: 28,320,234
 - Pathogen reads: 3,272,895
 - Non-pathogen reads: 591
 - Total reads: 30,284,116
 - Pathogen reads: 102,934
 - Non-pathogen reads: 203
 - Total reads: 26,508,366
 - Pathogen reads: 9,539,147
 - Non-pathogen reads: 17,625

986 K
- **S. aureus**<20 CFUs
 - 1 of 5
 - Total reads: 26,835,306
 - Pathogen reads: 26,397
 - Non-pathogen reads: 77,581
 - Total reads: 28,991,289
 - Pathogen reads: 424
 - Non-pathogen reads: 308
 - Total reads: 168,046
 - Pathogen reads: 27,391,148
 - Non-pathogen reads: 240,703

996 H
- **B. fragilis**, >100 CFUs
 - 3 of 3
 - Total reads: 28,388,841
 - Pathogen reads: 155,761
 - Non-pathogen reads: 4,853
 - Total reads: 28,745,844
 - Pathogen reads: 11,134
 - Non-pathogen reads: 1,346
 - Total reads: 96,154
 - Pathogen reads: 8,140
 - Non-pathogen reads: 8,140

1002 K
- **C. striatum**, 51-100 CFUs
 - 3 of 3
 - Total reads: 32,165,206
 - Pathogen reads: 32,165,206
 - Non-pathogen reads: 27,925,551
 - Total reads: 32,338,186
 - Pathogen reads: 536,155
 - Non-pathogen reads: 2,594
 - Total reads: 1,000,810
 - Pathogen reads: 53,019
 - Non-pathogen reads: 53,019

Culture-negative PJI

<table>
<thead>
<tr>
<th>Sample</th>
<th>Site</th>
<th>Microbiology</th>
<th>Qiagen REPLI-g</th>
<th>Illustra Single Cell</th>
<th>Illustra V2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total reads</td>
<td>Total reads</td>
<td>Total reads</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

984 K
- **Culture negative**
 - 0 of 4
 - Total reads: 31,616,449
 - Pathogen reads: 31,616,449
 - Non-pathogen reads: 26,240,307
 - Total reads: 36,808,230
 - Pathogen reads: 305
 - Non-pathogen reads: 16,974
Sonicate Fluid Samples Tested and Relative Read Count (LMAT)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Site</th>
<th>Microbiology</th>
<th>Qiagen REPLi-g</th>
<th>Illustra Single Cell</th>
<th>Illustra V2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total reads</td>
<td>Total reads</td>
<td>Total reads</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sonicate Fluid</td>
<td>Positive tissue cultures</td>
<td>Pathogen reads</td>
<td>Non-pathogen reads</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aseptic Failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>983</td>
<td>K</td>
<td>Culture negative</td>
<td>32,924,419</td>
<td>29,076,492</td>
<td>32,128,178</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 of 3</td>
<td>NA</td>
<td>278</td>
<td>45,539</td>
</tr>
<tr>
<td>987</td>
<td>K</td>
<td>Anaerobic organism, <20 CFUs</td>
<td>30,316,155</td>
<td>30,587,175</td>
<td>27,955,363</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 of 3, Bacillus species</td>
<td>NA</td>
<td>7,628</td>
<td>NA</td>
</tr>
</tbody>
</table>

Controls

<table>
<thead>
<tr>
<th></th>
<th>NA</th>
<th>NA</th>
<th>NA</th>
<th>NA</th>
<th>NA</th>
<th>NA</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. glutamicum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ringers</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGA no template</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MetaPhlAn2 Identification of Species

<table>
<thead>
<tr>
<th>Sample</th>
<th>MetaPhlAn2 Identifications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Qiagen</td>
</tr>
<tr>
<td>Culture-positive PJI</td>
<td></td>
</tr>
<tr>
<td>980</td>
<td>S. dysgalactiae
Torque teno mini virus 2
Torque teno mini virus 9
Torque teno virus</td>
</tr>
<tr>
<td>982</td>
<td>S. epidermidis
Mupapillomavirus 1</td>
</tr>
<tr>
<td>986</td>
<td>Unclassified Propionibacteriaceae
S. aureus</td>
</tr>
<tr>
<td>996</td>
<td>B. fragilis
Torque teno virus</td>
</tr>
<tr>
<td>1002</td>
<td>C. striatum</td>
</tr>
<tr>
<td>Culture-negative PJI</td>
<td></td>
</tr>
<tr>
<td>PJI984</td>
<td>No ID</td>
</tr>
</tbody>
</table>

β-Diversity of gene content of the samples was determined using QIIME and plotted on a principal coordinate analysis plot. Samples are colored according to the WGA kit used for amplification (A) or by template sample source (B). NT no template.
53 yo Man – Right Knee PJI

A. R knee arthroplasty
Knee pain, stiffness, swelling, and sinus tract development
Multiple courses of oral antibiotics
Referral to Mayo Clinic for evaluation
6 weeks IV antibiotics
R knee arthroplasty reimplantation
Sinus tract development

Nov 2012
April 2013
2014
July 2015
Feb 2016
April 2016
July 2016
April 2017

Synovial fluid: 28 756 cells/mm³ (93% PMNs), cultures negative, ESR: 53, CRP: 71.6
Synovial fluid: 2288 cells/mm³ (80% PMNs), cultures negative. PCR for M. hominis negative, ESR: 40, CRP: 93.5
ESR: 44, CRP: 51.3
Metagenomic analysis of Feb 2016 sonicate fluid positive for M. salivarium
Synovial fluid: 11 596 cells/mm³ (94% PMNs). 16S rRNA gene PCR/sequencing positive for M. salivarium

B. All Reads (27 984 652)
Microbial Reads (1906)
Bacterial Reads (1881)

- Human (27 049 593)
- Low LMAP Score (812 657)
- Microbial (1906)
- No Database Hits (16 796)
- Chimeras (420)
- Cellular Organism (15 412)

- Bacteria (1881)
- Protozoa (14)
- Fungi (11)
- Viruses (0)
- Mycoplasma (1796)
- Acinetobacter (58)
- Propionibacterium (19)
- Rubrivivax (1)
- Paenibacillus (4)

C. All Reads (234 088 137)
Microbial Reads (21 081)
Bacterial Reads (20 914)

- Human (228 541 886)
- Read Too Short (395 776)
- Low LMAP Score (2 763 397)
- Microbial (21 081)
- No Database Hits (883 550)
- Chimeras (38 803)
- Cellular Organism (24 395)
- PhiX (1 419 249)

- Bacteria (20 914)
- Protozoa (144)
- Fungi (20)
- Viruses (3)
- Mycoplasma (19 642)
- Propionibacterium (371)
- Pseudomonas (247)
- Corynebacterium (86)
- Arthrobacter (73)
- Staphylococcus (36)
- Streptococcus (35)
- Burkholderia (33)
- Ralstonia (35)
- Other Bacteria (356)
Antibiotic Resistance Prediction

Macrolide resistance-associated mutations in 23S rRNA gene of *M. pneumoniae*

Alignment of case to reference *M. salivarium* and *M. pneumoniae* 23S rRNA genes

Correct susceptibility inferred
94% monomicrobial
77% polymicrobial samples
Conclusions

• Metagenomic analysis of bone and joint infection promising
 – Culture-negative cases
 – Specimen type matters
 – Need for specific reagents/protocols/bioinformatics tools for bone and joint infection, especially prosthetic joint infection
Acknowledgments and Funding

Kerryl Greenwood-Quaintance, MS
Melissa Karau
Suzannah Schmidt, MS
Matt Thoendel, MD, PhD
Morgan Ivy
Aaron Tande, MD
Patricio Jeraldo, PhD
Nicholas Chia, PhD
Trisha Peel, MD
Douglas Osmon, MD
Thao Masters, PhD
Charles Cazanave, MD
Marta Fernandez-Sampedro, MD
Trisha Peel, PhD
Yu Mi Wi, MD
Andrej Trampuz, MD
Paolo Melendez, MD
Eric Gomez-Urena, MD
Cassandra Brinkman, PhD
Mark Rouse
Jon Badiola, MD
Kimberly Perez
Morgan Ivy
Paloma Anguita Alonso, MD
Maria Ruiz Ruizgomez, MD
Awele Maduka-Ezeh, MD
Jin Won Chung, MD
Jose del Pozo, MD
Seong Yeol Ryu, MD
Larry Baddour, MD
Rizwan Sohail, MD
Harmony Tyner, MD
Paschalis Vergidis, MD
James Steckelberg, MD
Elie Berbari, MD
Franklin Cockerill, MD
Jayawant Mandrekar, PhD
Arlen Hanssen, MD
Matt Abdek, MD
David Lewallen, MD
Robert Trousdale, MD
Mark Pagnano, MD
Miguel Cabanela, MD
David Jacofsky, MD
Franklin Sim, MD
Daniel Berry, MD
Michael Stuart, MD
Robert Cofield, MD
Paul Huddleston, MD
John Sperling, MD
Joaquin Sanchez-Sotelo, MD
Mark Dekutoski, MD
Bradford Currier, MD
Mike Yaszemski, MD
Youlonda Loechler
Krishnan Unni, MD
James Greenleaf, PhD
James Uhl
Scott Cunningham, MS
Clinical Microbiology Bacteriology and IP Staff
Mayo Clinic patients

R01 AR056647
R01 AI91594
R21 AI125870