Clinical Mg of dermohypodermitis and necrotizing fasciitis

Christophe Rodriguez, Aude Jary, Camille HUA, Marine Desroches, Emilie Sitterle, Guillaume Gricourt, Jean-Michel Pawlotsky, Olivier Chosidow, Emilie Sbidian, Jean-Winoc Decousser on behalf of the multidisciplinary necrotizing fasciitis study group.

Microbiology Dpt, INSERM U955 Team 18, NGS Platform IMRB, Dermatology Unit, Henri Mondor University Hospital, Creteil, France,
Necrotizing soft tissue infections (NSTIs)

Rare disease: 4/100000 people
High mortality rate: 20-50%
NSTIs Rx management

NONPURULENT
Necrotizing Infection /Cellulitis /Erysipelas

- Severe
- Moderate
- Mild

EMERGENT SURGICAL INSPECTION / DEBRIDEMENT
- Rule out necrotizing process

EMPIRIC Rx
- Vancomycin PLUS Piperacillin/Tazobactam

C & S

DEFINED Rx (Necrotizing Infections)
Monomicrobial Streptococcus pyogenes
- Penicillin PLUS Clindamycin
- Clostridial sp.
- Penicillin PLUS Clindamycin
- Vibrio vulnificus
- Doxycycline PLUS Ceftazidime
- Aeromonas hydrophila
- Doxycycline PLUS Ciprofloxacin

Polymicrobial
- Vancomycin PLUS Piperacillin/Tazobactam

INTRA VENOUS Rx
- Penicillin or
- Ceftriaxone or
- Cefazolin or
- Clindamycin

ORAL Rx
- Penicillin VK or
- Cephalexin or
- Dicloxacillin or
- Clindamycin

MANAGEMENT OF SSTIs

PURULENT
Furuncle / Carbuncle / Abscess

- Severe
- Moderate
- Mild

EMPIRIC Rx
- Vancomycin or
- Daptomycin or
- Linezolid or
- Televancin or
- Ceftaroline

EMPIRIC Rx
- TMP/SMX or
- Doxycycline

I & D C & S

I & D

I & D

I & D

DEFINED Rx
MRSA
- See Empiric
- MSSA
- Nafcillin or
- Cefazolin or
- Clindamycin

DEFINED Rx
- MRSA
- TMP/SMX
- MSSA
- Dicloxacillin or
- Cephalexin

\[\text{1}\text{Since daptomycin and televancin are not approved for use in children, vancomycin is recommended; clindamycin may be used if clindamycin resistance is <10-15% at the institution.}\]
Microbial classification of NSTIs

<table>
<thead>
<tr>
<th>Classification</th>
<th>Etiology</th>
<th>Pathogens</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I (70-80%)</td>
<td>Polymicrobial Gut microbiota</td>
<td>Aerobic/anaerobic Enterobacteria/Enterococcus sp.</td>
<td>Depending on comorbidities (Mortality from 5% to 50%)</td>
</tr>
</tbody>
</table>
| Type II (20-30%) | Monomicrobial Skin/ENT microbiota | S. pyogenes
S. aureus
other Streptococcus beta-hemolytic | Mortality > 30% - More if myositis is associated |
| Type III (infrequent) | Gram negative Hydric bacteria | Vibrio spp.
Haemophilus sp. | Mortality : 30 to 40% |
| Type IV (very infrequent) | Yeast/Mucorales (frequently post-traumatic) | Candida spp. in Immunocompromised
Zygomycetes in Immunocompetent | Mortality > 50%
More in immunocompromised |

Morgan MS et al, J Hosp Infect. 2010
Aim of the study

• Establish a map of microbial diversity of NSTIs by different approaches including NGS 16S and Shotgun Mg

• Evaluate different technical approaches for diagnostic

• Evaluate interest of these approaches in clinical routine
Patients

- NSTIs reference center in Henri-Mondor Hospital
- 34 patients enrolled in the study: clinical, radiological and microbiological data
- Empiric antibiotherapy
 - Piperacilline-Tazobactam (4 g x 3 -4/ day) + Clindamycine (600 mg x 3-4/day adapted to weight)
- Surgery for all patients INCLUDING biopsy
 - necrotic skin area (N=34)
 - healthy skin area (N=10)

Criteria

<table>
<thead>
<tr>
<th>Patient characteristic</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (years)</td>
<td>62 [24-93]</td>
</tr>
<tr>
<td>Sex ratio (M/F)</td>
<td>0,44</td>
</tr>
</tbody>
</table>

Pathology

<table>
<thead>
<tr>
<th>Pathology</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH</td>
<td>5</td>
</tr>
<tr>
<td>NF</td>
<td>28</td>
</tr>
<tr>
<td>Myositis</td>
<td>1</td>
</tr>
</tbody>
</table>

Comorbidity

<table>
<thead>
<tr>
<th>Comorbidity</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>13</td>
</tr>
<tr>
<td>Immunocompromised</td>
<td>10</td>
</tr>
<tr>
<td>Obesity</td>
<td>9</td>
</tr>
<tr>
<td>Toxic (alcohol, drugs, NSAIDs)</td>
<td>6</td>
</tr>
</tbody>
</table>

Clinical context

<table>
<thead>
<tr>
<th>Clinical context</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open wound (traumatic)</td>
<td>8</td>
</tr>
<tr>
<td>Chronic wound</td>
<td>11</td>
</tr>
<tr>
<td>Post chirurgical</td>
<td>1</td>
</tr>
<tr>
<td>Other (Bite, intertrigo...)</td>
<td>4</td>
</tr>
<tr>
<td>Unknown</td>
<td>10</td>
</tr>
</tbody>
</table>

Antibiotherapy

- Pre-admission: 23
- Post admission before surgery: 34
- Respecting guidelines: 33

Management and follow-up

- Number of surgery (median): 1 [1-4]
- Intensive Care admission/shock: 17
- Death: 2
Methods

Culture
- TSA
- Drigalsky
- CAN
- Columbia Aerobic and anaerobic
- Schaedler broth
- Chocolate (5%CO₂)

DNA/RNA extraction
- DNA/RNA Special protocol for metagenomic

MALDI-TOF MS
- Fungi and Bacteria Identification

Targeted Metagenomic (TM)
- 16S/ITS Lib prep
- MiSeq Sequencing
- Fungi and Bacteria Identification analysis

Shotgun Metagenomic (SM)
- DNA Lib prep (Nextera XT) + RNA Lib prep (Total RNA)
- NextSeq Sequencing
- MetaMIC® All pathogens Identification and quantification analysis

*Sitterle et al., Front in Microbiol 2017

Sample biopsy containing Bacteria, fungi, and/or viruses
Focus on Shotgun method « Mondor »

Automatized and standardized Pathogen genome Extraction (12 samples per run)

Library preparation DNA+RNA

Sequencing (Illumina NextSeq)

Server calculation (96Co/4To RAM)

MetaMIC®

Filtering

Classify and quantify with DB

Report and interpret
Qualitative Results (I)

More polymicrobial samples comparing to 16S

Less negative samples

TM : Targeted Metagenomic (16S+ITS)
SM : Shotgun Metagenomic
Qualitative Results (II)

- Pathogens isolation number in whole cohort:
 - Negative
 - Anaerobic
 - Enterobacteria
 - S. aureus
 - Other Staphylococcus
 - S. pyogenes
 - Other Streptococcus
 - Corynebacterium sp.
 - Fungi

- Number of samples:
 - Better with SM
 - Better with TM
 - Better with Culture
 - Equal Culture/SM
 - Equal Culture/TM/SM
 - Negative

* (p<0.01)
Quantitative Results (I)

$ r = 0.62 $
$p < 0.001$
Quantitative Results (II)

- Healthy Area
- Necrotic Area

SM ratio bacteria/human

- P < 0.01

Graph showing the comparison between Healthy Area and Necrotic Area with a significant difference indicated by P < 0.01.
Conclusion

• Shotgun Metagenomic is
 – always better than 16S in NSTIs diagnostic
 – better than culture for hard to culture bacteria (anaerobic, environmental gram negative)
 – Usable for bacteria quantification
 – Can distinguish different medical situation (healthy/necrotic situation)

• Shotgun is not better than culture for easy to culture bacteria

• Shotgun is usable in medical diagnostic
Many thanks

Head
JM Pawlotsky

Team « Virus »
S Chevaliez
S Fourati

Team « Bacteria »
JW Decousser
PL Woerther

Team « Fungi »
E Sitterle
ME Bougnoux
F Botterel
C Angebault

Head
C Rodriguez

Team « Bioinfo »
G Gricourt

Team « NGS »
A Jary
V Démontant
M Mercier-Darty

Team « infectious disease »
R Lepeule

Team « skin »
C Hua
E Sbidian
O Chosidow