

Nanopore Sequencing- a step forward in pathogen identification and antibiotic resistance gene profiling of urine samples

Katarzyna Schmidt 20-10-2017 ICCMg, Geneva

Conflict of interest

- I received free MinION flow cells and library preparation reagents as member of the ONT MinION Access Programme.
- I received one-off bursary to cover expenses at the International Conference on Clinical Metagenomics conference from ONT.

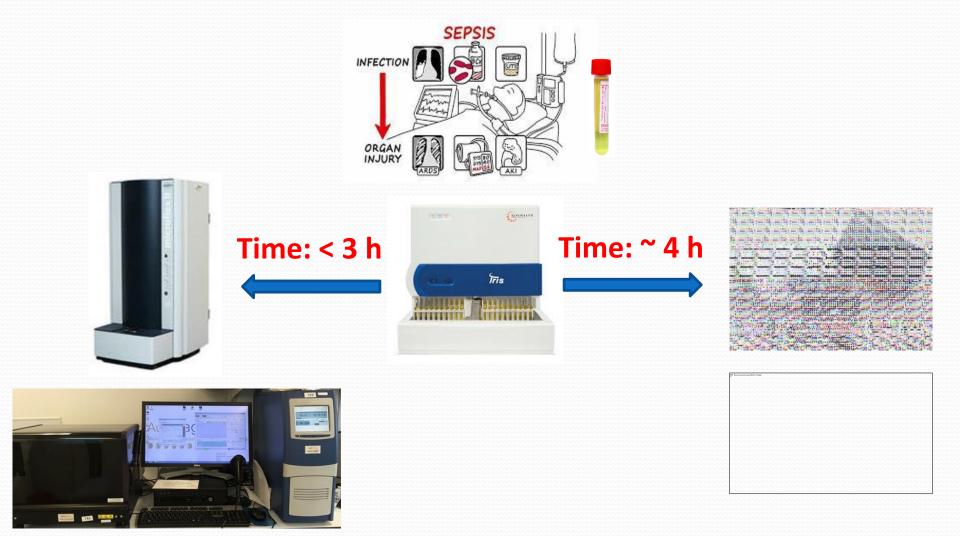
- Rationale for rapid diagnostics in urosepsis patients
- Workflow for urinary tract infections
- Results
- Problems and solutions
- Conclusions

Rationale for rapid diagnostics for cUTIs

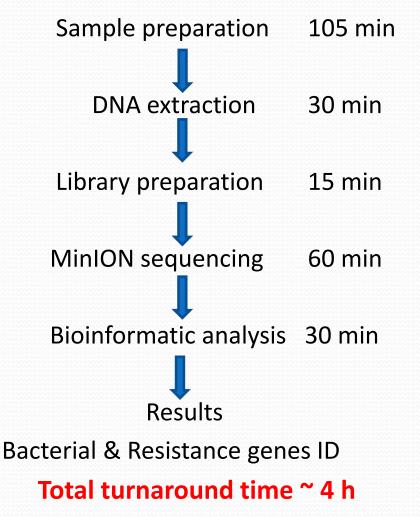
- In the UK, emergency hospital admissions for complicated UTIs among the elderly ('over-65s') doubled from 2002-12.
- cUTIs are a source of many septic episodes
 - > *E. coli* is now the commonest agent of bacteraemia in the UK.
 - Estimated mortality rate 18.2%.
- Global spread of multi-resistant uropathogenic *E. coli* ST131 may lead to failure treatment.

Current Diagnostics for cUTI

Turnaround Time: 24-72 h



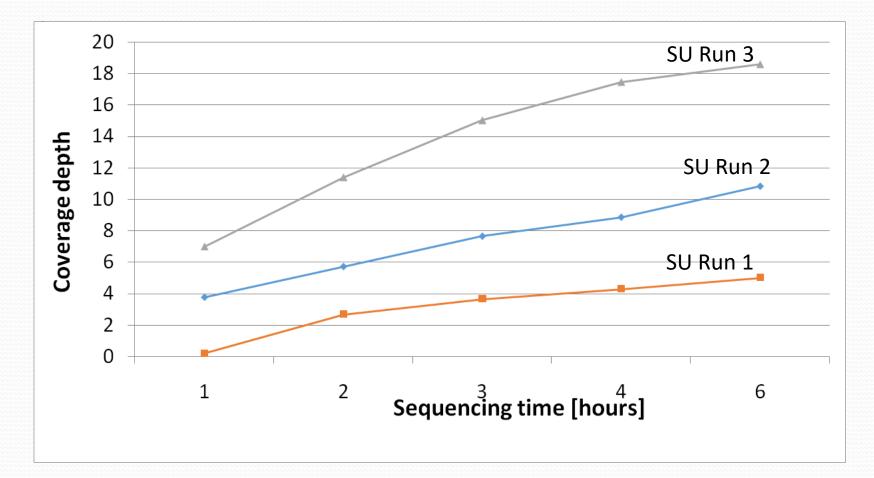
Rapid Diagnostics for cUTI



- Clinical urines with bacteria >10⁷ cfu/mL & human cells >10⁵/mL.
- Urine spiked with multi-drug resistant E. coli.
- Host cell and human DNA depletion performed.

Urine sample		

F	n mana di n'an	a 200
		100
24		3.342
		1 NOV
24		3 2 2 2
24		1000
		2000
21		1222
		1 NOV
24		3223
24		1000
		2000
24		1223
		1 NOV
24		3000
24		1000
		n niniz
24		3224
		1 mil
24		3000
1		122
		100
21		1222
		100
0		3000
21		122
		ann
24		3224
		100
24		2000
21		1222
		ani
24		3223
		100
24		2000
21		1222
		ani
24		3224
		100
24		3000
24		1225
		ani
24		3224
24		4.00
2		3 200
23		400
2		100
23		122
		400
24		3332
21		122
		3000
		122
		100
24		1222
		100
4		3 222
		122
		100
24		1223
		100
		3 2 2 2
21		122
		100
24		2222
		100
		3 202
		400
		100
		1223
		100
L		<u></u>


Improvement of MinION sequencing performance and yields over 6 h of sequencing (09.2014-10.2015)

CU: clinical urine; SU: spiked urine

Improvement of MinION coverage depth (SQK-MAP4, SQK-MAP5, SQK-MAP6)

Pathogen Identification

0

Escherichia coli 0139:H28 str. E24377A Escherichia coli APEC 078 Escherichia coli APEC 01 Escherichia coli ATCC 8739 Escherichia coli 0104:H4 Escherichia coli 0104:H4 Escherichia coli 0104:H4 Escherichia coli 0104:H4 Escherichia coli 0104:H4 Escherichia coli 026:H11 str. 11368 Escherichia scoli 026:H11 str. 11368 Escherichia coli 026:H11 str. 11368 Escherichia scoli 026:H11 str. 11368 Escherichia sco		0				
Escherichia coli APEC 01 Escherichia coli BMS-3-5 Escherichia coli BMS-3-5 Escherichia coli O104:H4 Escherichia coli UNNK88 Escherichia coli	\$11					
Escherichia coli SMS-3-5 Escherichia coli ATCC 8739 Escherichia coli ATCC 8739 Escherichia coli UNIX68 Escherichia coli UNIX68 Escherichia coli UNIX68 Escherichia coli UNIX68 Escherichia coli UDIX68 Escherichia						
Collapsed Node Highest Score Ocolspond Collapsed Node Highest Score Ocolspond Collapsed Node Collapsed Nod						
Collapsed Node Highest Score Ocols	Scherichia coli SMS-3-5					
Escherichia coli 0104344 Escherichia coli 0104344 Escherichia coli UMINK88 Escherichia coli UMINK88 Escherichia coli UMINK88 Escherichia coli 026:H11 str. 11368 O O O Pseudomonas putida H8234 O O Pseudomonas putida H8234 O O Deittia sp. Cs1-4						
Bescherichia coli UMNK88 Escherichia coli UMNK88						
Bischerichia coli UMNK88 Bischerichi						
Selection Highest Score Dodes Detrina sp. C51-4 Selection Highest Score Dodes MCBI Taxonomy ID: NCBI Taxonomy ID: NCB	Secherichia coll P12b					
Collapsed Node Highest Score O.0551 O.045 O.055 O.						
Collapsed Node Gebsielia dxytoca E718 Collapsed Node Gebsielia acidovorans SPH-1 Collapsed Node Mode Collapsed Node Colla						
Inde Collapsed Node Paeudomonas putida H8234 O						
Highest Score 0.0551 0.0045 5075 NCBI Taxonomy ID:						
0.0551 0.0045 5075 NCBI Taxonomy ID:		0				
5075	Escherichia coli					
	562					
Reads Rank:	specie	es				
Score:	0.012	27				
Read at this node:	2422					
* Arc angle is proportional to its read count						

E Taxonomic lineage (NCBI) superkingdom - Bacteria class -- Garmaproteobacteria class -- Garmaproteobacteria order --- Enterobacteriales family --- Enterobacteriaceae genus ---- Escherichia species ---- Escherichia coli Species identification in all clinical urines
(3 x E. coli, 2 x K. pneumoniae, E. cloacae).

Depth of coverage:
2.71x (CU5)- 22.84x (CU8).

Resistance gene profiles for Spiked Urines

Genes	Illumina	MinION run 3 ARMA (run time= 1 h)	MinION run 4 BLAST/CARD (run time= 1 h)				
β-Lactamase genes							
bla _{тем}	1	1, mv	1, mv				
bla _{стх-м}	group-1 (15)	mv not including <i>bla</i> _{CTX-M-15}	mv not including <i>bla</i> _{CTX-M-15}				
bla _{oxa}	1, 181	1, 181, mv	181, mv not including <i>bla</i> _{OXA-1}				
bla _{NDM}	4	1	mv				
bla _{сму}	2	mv not including <i>bla</i> _{CMY-2}	mv not including <i>bla</i> _{CMY-2}				
others	-	-	bla _{LAT-1}				
Aminoglycoside resistance genes							
aacC	aacC2	aacC2	аасС2, <mark>аасС8</mark>				
aadA2, aadA3, aadA5	aadA2, aadA3, aadA5	aadA2, aadA3, aadA5, mv	mv not including aadA2,A3, A5				
rmtB	rmtB	rmtB	rmtA				
aac(6')-Ib-cr	aac(6')-Ib-cr	aac(6′)-Ib-cr	aac(6′)-Ib				
strA/B	strA/B	strA/B	strA				
	Quinolone resistance genes						
qnr	qnrS1	qnrS1	qnrS				
aac(6')-Ib-cr	aac(6')-Ib-cr	aac(6')-Ib-cr	aac(6')-Ib				
	Trimethoprim resistance genes						
dfrA	dfrA-12, dfrA-17	dfrA-12, dfrA-17	dfrA7 (A17) , A12, <mark>A21, A22</mark>				
	Others						
cat	not detected	catB3	catB3/B6				
sul	sul1	sul1, <mark>sul2</mark>	sul1, sul2				
tet	tetA, tetR	tetA, tetR	tetA, tetR				

- Acquired resistance genes were readily detectable with 92% sensitivity
 - > mostly agreed with Illumina and phenotypic profile.
- MinION often flagged multiple gene variants (e.g. of bla_{TEM}, bla_{AmpC}, bla_{NDM}, bla_{CTX-M}) while Illumina found specific alleles.
- Chromosomal gyrA and parC mutations were not detected.
- MinION didn't detect mutations causing *ampC* up-regulation & couldn't discriminate chromosomal and plasmid *ampC*.

Future directions

Issues

- Needed ~1 μg DNA (>10⁷ cfu)
- Depletion of human cells
- Turnaround time and laborious library preparation
- Costs and throughput
- Low coverage, yields and high error rate
- Manual bioinformatics pipeline
- CARD database

Solutions

- Low-Input Kit: <10 ng DNA (~10⁵ cfu)
- Commercial or in-house methods
- Rapid Sequencing kit, automated sample processor VolTRAX
- PCR-free rapid barcoding kit, single sample flow-cell (Flongle), GridION X5
- R9.4 or R9.5 flow cells
- WIMP/ARMA software
- Curated clinical databases required

- MinION sequencing can rapidly identify pathogens and acquired antibiotic resistance genes from urine samples.
- Remaining challenges include:
- Choice of patients;
- Catheter urines;
- Improving the bioinformatics;
- Genotype/phenotype;
- ✓ Software output.

Acknowledgement

- Prof. David Livermore
- Prof. John Wain
- Dr Justin O'Grady
- Solomon Mwaigwisya
- Dr Lisa Crossman
- Microbiology Department of NNUH

- Dr Michael Doumith
- Prof. Neil Woodford

- Dr Carlos Pires
- Dr Arshad Khan
- Prof. Nigel Saunders

Thank you very much!