WGS To Quantify MDR-TB Transmission

Sébastien Gagneux, PhD

ICCMg3
Geneva, 18th – 19th October 2018
Tuberculosis (TB)

- Phthisis (gr.)
- Consumption
- White plague

Mycobacterium tuberculosis
TB is a deadly disease...

Deaths during the last 200 years

Paulson *Nature* 2013 502: S1-S3

<table>
<thead>
<tr>
<th></th>
<th>Number of cases</th>
<th>Number of deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>All forms of TB</td>
<td>10.0 million</td>
<td>1.3 million</td>
</tr>
<tr>
<td>MDR-TB</td>
<td>560,000</td>
<td>230,000</td>
</tr>
<tr>
<td>XDR-TB</td>
<td>~ 50,000</td>
<td>~ 25,000</td>
</tr>
</tbody>
</table>

＞50% Case-fatality: → Entering Post-Antibiotic Era!
The Problems

- Diagnostics
 ~120 years old

- Drugs
 ~50 years old

- Vaccine
 ~100 years old
Tuberculosis Treatment

<table>
<thead>
<tr>
<th></th>
<th>2 months</th>
<th>6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifampicin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethambutol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones (e.g., ciprofloxacin, moxifloxacin, gatifloxacin), ethionamide, rifabutin, rifapentin and rifalazil), amikacin, kanamycin, capreomycin, viomycin, PAS, cycloserine...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2nd line drugs: 2 years

DOTS

MDR-TB

XDR-TB
From Drug-sensitive to XDR-TB

- No resistance plasmids
- No horizontal gene transfer
Global Phylogeography of *M. tuberculosis*

Number of cases
- All forms of TB: 10.0 million
- MDR-TB: 560,000
- XDR-TB: ~ 50,000

Number of deaths
- All forms of TB: 1.3 million
- MDR-TB: 230,000
- XDR-TB: ~ 25,000

“Only” ~ 5% MDR / XDR
“Drug-Resistant Bacteria Are Less Fit”
Lab strains

Clinical strains

Gagneux et al. 2006 Science 312: 1944-6
Evolution of Drug Resistance

- DS
- DR
- Compensation

Borrell & Gagneux 2009 *IJTL* 13: 1456-66
Experimental Evolution

15 x (every 3 weeks)

RIF^R mutants evolved

GENOME SEQUENCE
Compensatory Mutations in \textit{rpoA/C}

Comas et al. 2012 Nature Genetics 44: 106–110
In clinico Fitness of *rpoA/C* Mutations

![Graph showing fitness of *rpoA/C* mutations with *P* < 0.05 for high-burden regions compared to global regions.](https://example.com/graph.png)

- **Global:** 12% MDR strains with CM
- **High-burden:** 21% MDR strains with CM (High-confi. CMs), 31% All CMs

* * P < 0.05

Comas et al. 2012 *Nature Genetics* 44: 106–110
Population-based Study in Georgia
Georgian MDR(+) *Mtb* Dataset 2011-2013

- 659 MDR(+) strains
- 53% of all MDR(+)

Secondary *rpoA/B/C* mutation:
- Present (77%)
- Absent

DR-profile:
- MDR (39%)
- Pre-XDR (46%)
- XDR (15%)

Clustering:
- Clustered (43%)

Gygli *et al.* unpublished
Bias Towards **Lineage 2** (Univariate Analysis)

$p = 3.16 \times 10^{-9}, X^2 = 34.8$

$p = 0.7\text{n.s.}, X^2 = 0.12$

Gygli *et al.* unpublished
Factors Associated with Increased Drug Resistance

Compensatory mutations in \(rpoA/B/C \)

- OR\(_{adj}\) 1.5
- CI\(_{95}\) 1.0 – 2.3

MDR

- OR\(_{adj}\) 2.7
- CI\(_{95}\) 1.5 – 4.8

Lineage 2

Isolation year 2013

- OR\(_{adj}\) 1.7
- CI\(_{95}\) 1.1 – 2.7

- OR\(_{adj}\) 3.1
- CI\(_{95}\) 2.4 – 4.1

XDR

Resistance Increase

Number of additional DR mut

Gygli et al. unpublished
Factors Associated with Clustering of MDR/XDR-TB

Compensatory mutations
- OR_{adj} 2.53
- CI_{95} 1.54 – 4.24

Lineage 2
- OR_{adj} 5.26
- CI_{95} 2.65 – 11.23

No. DR mut
- OR_{adj} 0.72
- CI_{95} 0.56 – 0.97

Clustering
- OR_{adj} 6.18
- CI_{95} 3.74 – 10.49

Prisons
- OR_{adj} 6.18
- CI_{95} 3.74 – 10.49

Age
- OR_{adj} 0.98
- CI_{95} 0.97 – 1.0

Lineage 2
- OR_{adj} 5.26
- CI_{95} 2.65 – 11.23

No. DR mut
- OR_{adj} 0.72
- CI_{95} 0.56 – 0.97

Clustering
- OR_{adj} 6.18
- CI_{95} 3.74 – 10.49

Prisons
- OR_{adj} 6.18
- CI_{95} 3.74 – 10.49

Age
- OR_{adj} 0.98
- CI_{95} 0.97 – 1.0

Gygli et al. unpublished
MDR/XDR-TB in Prisons & Clustering

Isolate origin

- Prisoner
- Civilian

Incarceration
Proportion of strains

- 411

Clustering & Prisons
Proportion of strains

- 147
- 133
- 101

Gygli et al. unpublished
Reconstructing Transmission Trees

Transmission network
Arrows indicate direction of transmission
Numbers indicate pairwise distance in SNPs

Red: Prisoner
Yellow: Civilian
Contribution of Prisons to the MDR-TB Epidemic in Georgia

167 transmission events i.e. 75.5% linked to prisons

*Transmission events
**Of the total 217 high confidence transmission events

Gygli et al. unpublished
Contribution of Prisons to the MDR-TB Epidemic in Georgia

Transmission events with >0.5 posterior probability

87 transmission events i.e. 40% linked to prisons

9* 4.1%**

23* 10.6%** 55* 25.3%**

*Transmission events
**Of the total 217 high confidence transmission events

Gygli et al. unpublished
Conclusions

• Compensatory mutations in RNAP of RIFR *Mtb*
• High frequency in MDR/XDR ‘hotspots’
• Associated with progression MDR to XDR
• Associated with ongoing transmission of MDR/XDR
• High spill-over from prisoners to civilians

→ Compensatory evolution contributes to the spread of MDR/XDR-TB
→ Prisons as breeding grounds for fit MDR-TB
Thanks to...

IBV, Valencia
Iñaki Comas
University of Valencia
Mireia Coscollá
University of Cape Town
Helen Cox
Stellenbosch University
Rob Warren
University of Bern
Matthias Egger
University of Ghana
Dorothy Yeboah-Manu
ITM, Antwerp
Bouke de Jong
University of Basel
Richard Neher
ETH Zurich
Ruedi Aebersold/Ben Collins
Uwe Sauer
Tanja Stadler
Jörg Stelling
Christian Beisel
FZ Borstel
Stefan Niemann

• Sonia Borrell
• Daniela Brites
• Andrej Trauner
• Miriam Reinhard
• Levan Jugheli
• Sebastian Gygli
• Liliana Rutaihwa
• Rhastin Castro
• Chloé Loiseau
• Monica Ticlla
• Peter Major
• Fabrizio Menardo
• Nino Maghradze
• Jerry Hella

sebastien.gagneux@swisstph.ch