Towards Personalized Medicine Based on the Gut Microbiota

Eran Segal Weizmann Institute of Science

Lab site: http://genie.weizmann.ac.il

Talmor et al., in preparation

Levi et al., in preparation

MICROBIOME ORIGIN	PERSONALIZED NUTRITION	CIRCADIAN RHYTHMICITY
Rothschild et al., Nature 2018	Zeevi et al., Cell 2015 Korem et al., Cell Metab. 2017	Thaiss et al., Cell 2014 Thaiss et al., Cell 2016
BACTERIAL GENETICS	NUTRITION SUPPLEMENTS	OBESITY
Korem et al., Science 2015 Zeevi et al., in preparation	GRANULATED SUGAR SUBSTITUTE Suez et al., Nature 2014	Thaiss et al., Nature 2016

PROBIOTICS	HEART DISEASE	MULTIPLE SCLEROSIS		
Suez et al., Cell 2018 Zmora et al., Cell 2018	Talmor et al., in preparation	Levi et al., in preparation		

Do probiotics colonize the human gut?

Invasive microbiome profiling along the human gut following probiotic intake

Zmora et al., Cell 2018

Probiotic colonization differs across individuals

Zmora et al., Cell 2018

Probiotic colonization differs across individuals

Zmora et al., Cell 2018

Do probiotics impact microbiome reconstitution after antibiotics?

Invasive microbiome profiling along the human gut following recovery from antibiotics

Suez et al., Cell 2018

Probiotics delay microbiome return to baseline after antibiotics

Suez et al., Cell 2018

PROBIOTICS	HEART DISEASE	MULTIPLE SCLEROSIS
Suez et al., Cell 2018 Zmora et al., Cell 2018	Talmor et al., in preparation	Levi et al., in preparation

Nature or Nurture: What determines our microbiome composition?

Idealized experimental setting for distinguishing the effect of genetics and environment

Rothschild, Weissbrod, and Barkan et al., Nature, 2018

Israel is ideal for experiments aimed at distinguishing the effect of genetics and environment

- Genetically diverse (most Jewish population arrived over last 100 years)
- Environmentally homogeneous (relatively)

Rothschild, Weissbrod, and Barkan et al., Nature, 2018

Do ancestrally similar individuals have more similar microbiome compositions?

Ancestry is not associated with microbiome composition

Yemenite

Sephardi

- ★ Middle Eastern
- Other

Rothschild, Weissbrod, and Barkan et al., Nature, 2018

Ancestry is not associated with microbiome composition

Yemenite

Middle Eastern

Rothschild, Weissbrod, and Barkan et al., Nature, 2018

Ashkenazi

Biome-Association Index: Association of microbiome and host phenotypes after accounting for host genetics

Phenotype = genotype effect + microbiome effect + environmental effect (noise)

	Biome-explainability	Genetic heritability
Phenotype	Israeli cohort	(literature)
HDL	35.9% ***	23.9% - 48%
Lactose cons.	35.5% ***	N/A
Waist circ.	28.8% ***	15% - 24%
Hip circ.	27.1% ***	10.6% - 27%
Glycemic status	24.5% ***	N/A
BMI	24.5% ***	14% - 32%
WHR	23.9% ***	12% - 14%
Fasting glucose	21.9% ***	9% - 33%
HbA1c%	16.1% *	21% - 32%
Creatinine	12.3% *	19% - 25%
Height	3.2%	33% - 68%
Total Cholesterol	0%	14% - 53%

Biome-association levels are comparable to genetic heritability estimates based on thousands or tens of thousands of individuals

Rothschild, Weissbrod, and Barkan et al., Nature, 2018

Suez et al., **Cell** 2018 Zmora et al., **Cell** 2018

Talmor et al., in preparation

Levi et al., in preparation

Detecting microbiome Sub-Genomic Variability (SGV)

Variable regions associate with disease risk

		Negative Positive					
p <10⁻⁵	p<5x10 ⁻⁴	p<0.001	n.s.	n.s.	p<0.001	p<5x10 ⁻⁴	p<10 ⁻⁵
q<0.01	q<0.05	q<0.1	n.s.	n.s.	q<0.1	q<0.05	q<0.01

Variable regions

ale DSM 17629:474-477 b. SR1/5:1387-1388 siliensis B84634:2160-2161

:2096-2099

SM 3353:1116-1125

13353:1113-1116

Deletion of a single region involved in butyrate production associates with an increase of 6kg in body weight

Deletion of a single region involved in butyrate production associates with an increase of 6kg in body weight

Association of butyrate producing region with BMI fully replicate in Dutch Lifelines cohort

Zeevi and Korem et al., unpublished

Lifelines cohort: Zhernakova et al., Science 2016

PROBIOTICS	HEART DISEASE	MULTIPLE SCLEROSIS
Suez et al., Cell 2018 Zmora et al., Cell 2018	Talmor et al., in preparation	Levi et al., in preparation

What is healthy nutrition?

1972

Is cholesterol	Is cholesterol	Should you	Is a low carb
good for you?	bad for you?	eat less fat?	diet healthy?
Should you be a vegetarian?	Should you eat butter?	Are dairy products good?	How much sugar should you eat?

Postprandial (post-meal) glucose response

Continuous glucose monitoring

What is the response of different people to the same food?

Testing the cohort response to standardized meals

The same person has a highly similar post-meal response to identical meals across different days

Different people have widely different post-meal responses to identical meals

What explains the variability in people's response to the same food?

Variability in post-meal glucose response across people associates with microbiota composition and function

Can we predict the personal post-prandial glucose response to any complex meal?

Meal Carbohydrates: State of the art in predicting post-meal glucose responses

Accurate predictions of personalized glucose responses

Can personally tailored dietary interventions improve post-prandial glucose responses?

Constructing personally tailored diets that target postprandial glucose responses (PPGR)

Can you distinguish between the high and low PPGR diets?

Personally tailored diets lower the post-prandial glucose response

Personally tailored diets lower the post-prandial glucose response

Can you distinguish between the high and low PPGR diets?

Personally tailored diets lower the post-prandial glucose response

Personally tailored diets lower the post-prandial glucose response

Dietary interventions targeting post-meal glucose responses induce consistent changes in microbiota

- Bifidobacterium adolescentis decreases following the low PPGR diet week
- Low levels associate with greater weight loss (Santacruz et al., 2009)
- Roseburia inulinivorans increases following the low PPGR diet week
- Low levels associate with T2DM (Qin et al., 2012)

Fold	change (c	vs. days 0-3)		
-0.5	-0.25	0	0.25	0.5

(days 4 7

device 0 2)

What is the long-term clinical impact of personally tailored dietary interventions?

Randomized Clinical Trial (NCT03222791) to test the long-term (6M) effect of a personalized algorithm diet

Primary outcomes

- Reduction in average glucose levels (based on HbA1C% and CGM)
- Reduction in time below 140 mg/dl (based on CGM)

Randomized Clinical Trial (NCT03222791) to test the long-term (6M) effect of a personalized algorithm diet

Algorithm diet reduces post-meal glucose levels

Algorithm diet reduces post-meal glucose levels

Algorithm diet reduces average glucose levels

Placebo, Metformin, Lifestyle from Diabetes Prevention Program, NEJM 2002 CGM-based HbA1c% estimate from Nathan et al., Diabetes Care 2008

Algorithm diet reduces average glucose levels

Placebo, Metformin, Lifestyle from Diabetes Prevention Program, NEJM 2002 CGM-based HbA1c% estimate from Nathan et al., Diabetes Care 2008

Algorithm diet may reduce incidence of diabetes

Summary and take home messages

- People have unique post-meal glucose responses to identical meals
- An algorithm accurately predicts post-meal glucose responses
- Personalized diets successfully lower post-meal glucose response
- Findings replicated in the U.S. (Hall et al., 2018, Stanford study)
- Algorithm tested and validated in >2,000 subjects

Segal Lab

Nitzan Arzi Noam Bar Elad Barkan Shani Ben-Ari Orly Ben Yaakov Noa David Yochai Edlitz Nastya Godneva Tal Karady Shelley Klompus Dmitry Kolobkov Yulia Kogan Noa Kossower Eran Kotler Netta Koren Izhak Levi Martin Mikl Sigal Peled-Livyatan Gal Perlman Maya Pompan Michal Rein Hagai Rossman Daphna Rothschild Ira Shavitt Smadar Shilo Ilya Slutskin Tamara Travinsky Yaara Unger Thomas Vogl Adi Watzman Adina Weinberger Bat-Chen Wolf Liron Zahavi

Collaborators

Weizmann Institute Eran Elinav Niv Zmora Jotham Suez Christoph Thaiss

Uni. of Groningen Alexander Kurilshikov Jingyuan Fu Cisca Wijmenga Alexandra Zhernakova **Rockefeller Uni.** David Zeevi

Columbia Uni. Tal Korem

Tel-Aviv Uni. Prof. Zamir Halpern

Twitter: @segal_eran

Website: http://genie.weizmann.ac.il