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Do probiotics colonize the human gut?



Invasive microbiome profiling along
the human gut following probiotic intake

Zmora et al., Cell 2018



Probiotic colonization differs across individuals

Zmora et al., Cell 2018



Probiotic colonization differs across individuals

Zmora et al., Cell 2018



Do probiotics impact microbiome 
reconstitution after antibiotics?



Invasive microbiome profiling along the human
gut following recovery from antibiotics

Suez et al., Cell 2018



Probiotics delay microbiome
return to baseline after antibiotics

Suez et al., Cell 2018



MICROBIOME ORIGIN

Rothschild et al., Nature 2018

BACTERIAL GENETICS

Korem et al., Science 2015
Zeevi et al., in preparation

CIRCADIAN RHYTHMICITY

Thaiss et al., Cell 2014
Thaiss et al., Cell 2016

PERSONALIZED NUTRITION

Zeevi et al., Cell 2015
Korem et al., Cell Metab. 2017

Nutritional supplementsNUTRITION SUPPLEMENTS

Suez et al., Nature 2014

OBESITY

Thaiss et al., Nature 2016

PROBIOTICS

Suez et al., Cell 2018
Zmora et al., Cell 2018

Nutritional supplementsHEART DISEASE

Talmor et al., in preparation

MULTIPLE SCLEROSIS

Levi et al., in preparation



Nature or Nurture:
What determines our

microbiome composition?



Idealized experimental setting for distinguishing
the effect of genetics and environment

Rothschild, Weissbrod, and Barkan et al., Nature, 2018
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Environment A

Genetics B 
Environment B

Genetics A+B
Common Environment



Israel is ideal for experiments aimed at distinguishing
the effect of genetics and environment

Ashkenazi

Sephardi

North African

Middle Eastern

Yemen

• Genetically diverse (most Jewish population arrived over last 100 years)
• Environmentally homogeneous (relatively)

Rothschild, Weissbrod, and Barkan et al., Nature, 2018



Do ancestrally similar individuals have
more similar microbiome compositions?



Ancestry is not associated with microbiome composition

Rothschild, Weissbrod, and Barkan et al., Nature, 2018



Ancestry is not associated with microbiome composition

Rothschild, Weissbrod, and Barkan et al., Nature, 2018



Biome-Association Index: Association of microbiome
and host phenotypes after accounting for host genetics

Phenotype = genotype effect + microbiome effect + environmental effect (noise)

Biome-association levels are comparable to 
genetic heritability estimates based on 

thousands or tens of thousands of individuals

Rothschild, Weissbrod, and Barkan et al., Nature, 2018
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Detecting microbiome Sub-Genomic Variability (SGV)

Per-microbe
genome coverage

Genome 1

Genome 2

Genome 3

Binning
Normalization

Filtering

Identify differential coverage across 893 samples
(from Zeevi et al., Cell 2015)
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Accurate assignments

Widespread across one archaeal 
and 6 bacterial phyla

Zeevi and Korem et al., unpublished
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Variable regions

Variable regions associate with disease risk

Zeevi and Korem et al., unpublished



Zeevi and Korem et al., unpublished

Deletion of a single region involved in butyrate production 
associates with an increase of 6kg in body weight



Zeevi and Korem et al., unpublished

Deletion of a single region involved in butyrate production 
associates with an increase of 6kg in body weight

Butyrate
production

Inositol degradation

Sugar transporters



Lifelines cohort

Association of butyrate producing region with BMI
fully replicate in Dutch Lifelines cohort

Zeevi and Korem et al., unpublished Lifelines cohort: Zhernakova et al., Science 2016
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What is healthy nutrition?
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Postprandial (post-meal) glucose response

Zeevi et al., Cell 2015
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Zeevi et al., Cell 2015

Postprandial 
Hyperglycemia





The Personalized Nutrition Project:
Understanding personal glucose responses

Adina WeinbergerNiv Zmora

Zeevi et al., Cell 2015



Continuous glucose monitoring

Zeevi et al., Cell 2015



What is the response of
different people to the same food?



Testing the cohort response to standardized meals

800 x 

Zeevi et al., Cell 2015



The same person has a highly similar post-meal
response to identical meals across different days
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Different people have widely different
post-meal responses to identical meals

Population Responses to 
Standardized Meals

Four Individual Responses
to Bread

Zeevi et al., Cell 2015



What explains the variability in
people’s response to the same food?



Variability in post-meal glucose response across people 
associates with microbiota composition and function

Zeevi et al., Cell 2015



Can we predict the personal post-prandial 
glucose response to any complex meal?



Meal Carbohydrates: State of the art in
predicting post-meal glucose responses
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Accurate predictions of personalized glucose responses

State of the art

Meal carbohydrates (g)
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Our prediction
800 participants

Prediction validation
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Zeevi et al., Cell 2015



Can personally tailored dietary interventions 
improve post-prandial glucose responses?



Constructing personally tailored diets that
target postprandial glucose responses (PPGR)

Zeevi et al., Cell 2015
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High PPGR Diet



Can you distinguish between the high and low PPGR diets?
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Zeevi et al., Cell 2015
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Personally tailored diets lower
the post-prandial glucose response

Zeevi et al., Cell 2015
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Personally tailored diets lower
the post-prandial glucose response

Zeevi et al., Cell 2015
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Can you distinguish between the high and low PPGR diets?

Orange juice

Peach

Bread with 
butter

Grapes

Breakfast

Snack

Dinner

Night snack

?

Lunch Schnitzel

Croissant

Halva

Hummus

Red wine

Goulash 
with rice

?

Zeevi et al., Cell 2015
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Can you distinguish between the high and low PPGR diets?

High PPGR Diet Low PPGR Diet



Personally tailored diets lower
the post-prandial glucose response
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Personally tailored diets lower
the post-prandial glucose response

Zeevi et al., Cell 2015

High PPGR diet
Low PPGR diet



Dietary interventions targeting post-meal glucose 
responses induce consistent changes in microbiota

Zeevi et al., Cell 2015

• Bifidobacterium adolescentis decreases 

following the low PPGR diet week

• Low levels associate with greater weight loss 

(Santacruz et al., 2009)

• Roseburia inulinivorans increases following 

the low PPGR diet week

• Low levels associate with T2DM 

(Qin et al., 2012)



What is the long-term clinical impact of 
personally tailored dietary interventions?



Randomized Clinical Trial (NCT03222791) to test the
long-term (6M) effect of a personalized algorithm diet

Primary outcomes
 Reduction in average glucose levels (based on HbA1C% and CGM)
 Reduction in time below 140 mg/dl (based on CGM)

Algorithm diet

Randomization

Standard of care diet

Randomization
N=200, HbA1C% = 5.7-6.5



Randomized Clinical Trial (NCT03222791) to test the
long-term (6M) effect of a personalized algorithm diet

CGM
HbA1C%

Profiling Intervention Follow up
1296543210-1

Month

Primary 
Endpoints

Weight & fat %
Blood pressure
Fasting glucose

Insulin
Fatty liver

Lipid profile

Secondary 
Endpoints

Microbiome
Metabolomics

Exploratory 
Endpoints

Food logging Monitoring



Algorithm diet reduces post-meal glucose levels



Algorithm diet reduces post-meal glucose levels

*** P<0.0001



Algorithm diet reduces average glucose levels

Placebo, Metformin, Lifestyle from 
Diabetes Prevention Program, NEJM 2002

CGM-based HbA1c% estimate from 
Nathan et al., Diabetes Care 2008

*** P<0.0001



Algorithm diet reduces average glucose levels

Placebo, Metformin, Lifestyle from 
Diabetes Prevention Program, NEJM 2002

CGM-based HbA1c% estimate from 
Nathan et al., Diabetes Care 2008

*** P<0.0001



Algorithm diet may reduce incidence of diabetes



People have unique post-meal glucose responses to identical meals

An algorithm accurately predicts post-meal glucose responses

Personalized diets successfully lower post-meal glucose response

Findings replicated in the U.S. (Hall et al., 2018, Stanford study)

Algorithm tested and validated in >2,000 subjects

Summary and take home messages
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