Challenges and opportunities for whole-genome sequencing-based surveillance of antibiotic resistance

Prof. Willem van Schaik Professor in Microbiology and Infection

Institute of Microbiology and Infection University of Birmingham, United Kingdom w.vanschaik@bham.ac.uk WvSchaik

Sequence-based pathogen surveillance

use sequence data to infer relatedness of strains

MLST (allelic profile of 5 – 7 housekeeping genes)

Strain A

Strain B

Low resolution

Differences may be apparent, but not clear

Provides a nomenclature to describe clones (e.g. *E. coli* ST131) MLST

WGS

Strain A

High resolution

Core genome phylogeny (SNP-based, core genome MLST)

Strain B

Whole genome phylogeny (whole genome MLST)

Many tools

Which ones to choose?

Or use the tools developed by Torsten Seemann (Univ of Melbourne)

Whole-Genome Sequencing of Bacterial Pathogens: the Future of Nosocomial Outbreak Analysis

Scott Quainoo,^a Jordy P. M. Coolen,^b Sacha A. F. T. van Hijum,^{c,d} Martijn A. Huynen,^c Willem J. G. Melchers,^b Willem van Schaik,^e Heiman F. L. Wertheim^b

Clin Microbiol Rev 30:1015–1063

But there is more in a whole genome sequence...

Antibiotic resistance genes

Presence of mobile genetic elements

Vancomycin-resistant Enterococcus faecium

What is an antibiotic resistance gene?

"a gene that confers resistance to an antibiotic in an otherwise susceptible microbial host"

Horize ally acquired resistance genes: e.g. *bla*KPC, *ermB*, *vanA* associated with mobile genetic elements

Mutations in housekeeping genes that conference ance e.g. target modification, porin mutation

Conserve genes that make a species intrinsically resistant e.g. efflux pumps

Antibiotic Resistance Gene Databases

ARDB: no updates, many intrinsic resistance genes: do not use

CARD: frequently updated, based on ARDB. Contains some intrinsic resistance genes; database for 'resistance SNPs' but can give false positives

ResFinderFrequently updated. Acquired resistance genesARG-ANNOTonly, small number of intrinsic resistance genes.

ResFams: prediction of resistance genes from metagenomes, many false positives or unvalidated genes

Antibiotic Resistance Gene Databases

Subject Section

ARGs-OAP v2.0 with an Expanded SARG Database and Hidden Markov Models for En-

	SOFTWARE	Open Access
Xiaole	DeepARG: a deep learning approach for predicting antibiotic resistance genes from	
R. Cole	MEGARes: an antimicrobial resistance database for	
	Gustavo Arange high throughput sequencing	

Steven M. Lakin^{1,†}, Chris Dean^{2,†}, Noelle R. Noyes^{2,†}, Adam Dettenwanger³, Anne Spencer Ross³, Enrique Doster¹, Pablo Rovira⁴, Zaid Abdo², Kenneth L. Jones⁵, Jaime Ruiz⁶, Keith E. Belk⁴, Paul S. Morley¹ and Christina Boucher^{6,*}

Antibiotic Resistance Genes

When reporting antibiotic resistance genes....

Sequence-based diagnostics of antibiotic resistance genes?

Sequence-based diagnostics of antibiotic resistance genes?

Mycobacterium tuberculosis

Very slow growth

No horizontal gene transfer

Large collection of strains + resistance phenotypes

WGS accurately predicts susceptibility 93.6% – 99.0% to four key antibiotics CRyPTIC Consortium and the 100,000 Genomes Project. New Engl J Med. 2018 379:1403 Sequence-based diagnostics of antibiotic resistance genes?

Common causes of bloodstream infections Fast growth

Escherichia coli Staphylococcus aureus Enterococcus Horizontal gene transfer

Emergence of new resistance determinants (e.g. *mcr*)

Fast WGS (e.g. of bloodstream cultures) for screening while susceptibility testing is ongoing

Prediction of Plasmids from Illumina Data

MiSeq

Sequence repeats in plasmid sequences complicates assembly

42 completely assembled genomes 12 genera 148 plasmids (1.5 – 339 kbp)

Illumina + PacBio sequences available

Arredondo-Alonso et al., 2017. Microb. Genomics 3:128

Prediction of Plasmids from Illumina Data

Comparison of completely automated approaches

PlasmidFinder: web-based tool to detect replicon sequences in contigs Carattoli et al., Antimicrob Agents Chemother. 2014 58:3895

ásinn: impussiø

On the (im)possibility of reconstructing plasmids from wholegenome short-read sequencing data

Sergio Arredondo-Alonso,¹ Rob J. Willems,¹ Willem van Schaik^{1,2} and Anita C. Schürch^{1,*}

cBar: detects differences in k-mer composition between plasmids and chromosomes *Zhou & Xu Bioinformatics 2010 26:2051*

Recycler: extracts circular sequences from De Bruijn assembly graphs Rozov et al. Bioinformatics 2017 33:475

PlasmidSPAdes: plasmids have different coverage (higher copy number) than chromosome Antipov et al. Bioinformatics 2016 32:3380

Arredondo-Alonso et al., 2017. Microb. Genomics 3:128

Prediction of Plasmids from Illumina Data

Large plasmids

(> 50 kbp)

Number of plasmids correctly predicted (>90% of plasmid sequence)

> Medium plasmids (10-50 kbp)

Results are variable

Good performance PlasmidSPAdes, but all plasmids in single bin

Arredondo-Alonso et al., 2017. Microb. Genomics 3:128

100

80

80

40

20

0

Reference plasmids PlasmidSPAdes

Recycler cBAR

PlasmidFinder

Small plasmids

(< 10 kbp)

Long reads can cover repeats

Summary

Whole genome sequencing is required for high-resolution typing

Ann Snaith Maria Papangeli Steven Dunn Alan McNally

Sergio Arredondo-Alonso Rob Willems Anita Schürch

University Hospitals Birmingham NHS Foundation Trust

> Abid Hussain Katie Hardy

Funding

