Diagnosis of bone and joint infections: the point of view from the clinical metagenomist

Matthew Thoendel MD, PhD
ICCMg Oct 17th, 2019
I have no financial disclosures
Goals of this presentation

• Review prosthetic joint infections (PJIs) and why they are good cases for metagenomic shotgun sequencing (MSS)

• Discuss metagenomic sequencing for PJIs in the context of ideal qualities of a test from the clinical metagenomist point of view

• Review data supporting why MSS may be useful, but not always necessary, for PJI
Case

- 68 yo female
- PMH: Crohn’s disease: adalimumab then vedolizumab

Bilateral TKA 8 yr ago → Bilateral Cx-negative PJI 2 yr ago → DAIR Vanc + cefep, Cefadroxil → Recurrent right PJI → First step of a 2-stage exchange

Necrotic tissue seen
Culture-negative
16S rDNA PCR neg
Targeted PCRs neg
Serologies neg

What do you go from here?
A little background

Prosthetic Joint Infection (PJI)

- Primarily bacterial, some fungal
- Acute or chronic
- Treatment is difficult
 - Surgery almost always required
 - Sometimes joint is removed for months (2-stage exchange)
 - Antibiotics from 6 weeks to lifelong

Metagenomic Shotgun Sequencing

- Nucleic acid (DNA and/or RNA) extracted directly from a clinical specimen
- No targeted amplification (e.g. 16S rRNA)
- Millions of short sequences obtained
- Sequences analyzed to detect microorganisms
What makes PJI an attractive target for MSS

• Cultures don’t always work
• Typically a sterile site
• “Wide” range of pathogens
• The diagnosis CAN wait a few days
• Long-term treatment implications
Goals of the clinical metagenomist

• To provide an accurate identification of pathogens to aid in the care of patients
 • We want to help patients
 • Tests must be effective, timely, and useful
 • We do not want to harm patients
 • Results must be accurate
Goals of the clinical metagenomist

• To provide an accurate identification of pathogens to aid in the care of patients
 • We want to help patients
 • Tests must be effective, timely, and useful
 • We do not want to harm patients
 • Results must be accurate
Does metagenomic sequencing work for PJI?

- To date, three larger studies
 - Two studies focused on sonicate fluid as a sample
 - One studied synovial fluid prior to surgery

Sonicate fluid:

Molecular Diagnosis of Orthopedic-Device-Related Infection Directly from Sonication Fluid by Metagenomic Sequencing

Identification of Prosthetic Joint Infection Pathogens Using a Shotgun Metagenomics Approach

Direct Detection and Identification of Prosthetic Joint Infection Pathogens in Synovial Fluid by Metagenomic Shotgun Sequencing
Sonicate fluid MSS results

• Street, et al. results
 • 97 samples: 62 culture-positive, 35 culture-negative

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>New Identifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versus sonicate fluid culture</td>
<td>88% (Genus level=93%)</td>
<td>88%</td>
<td>9 probable pathogens</td>
</tr>
<tr>
<td>Vs. sonicate fluid and PPT culture</td>
<td>68%</td>
<td>88%</td>
<td>6 probable pathogens</td>
</tr>
</tbody>
</table>

New Identifications:
Fusobacterium nucleatum, Veillonella parvula, Finegoldia magna, Parvimonas micra, Staphylococcus aureus, and Streptococcus dysgalactiae
Sonicate fluid MSS results

- Thoendel *et al.* results
 - 408 samples: 115 Culture-pos, 98 Cx-neg PJI, 195 aseptic failure

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>New Identifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versus sonicate fluid culture</td>
<td>94.8% (115 Cx-pos PJI)</td>
<td></td>
<td>11 from Cx-pos PJI (9.6%) 43 from Cx-Neg PJI (43.9%)</td>
</tr>
<tr>
<td>Vs. sonicate fluid and PPT culture</td>
<td>90.5% (137 Cx-pos PJI)</td>
<td>96.4% (Aseptic failures)</td>
<td>12 from Cx-pos PJI (8.8%) 27 from Cx-neg PJI (35.5)</td>
</tr>
<tr>
<td>Vs. sonicate fluid, PPT, and synovial fluid culture</td>
<td>89% (146 Cx-pos PJI)</td>
<td></td>
<td>12 from Cx-pos PJI (8.2%) 21 from Cx-neg PJI (31.3%)</td>
</tr>
</tbody>
</table>
Synovial Fluid MSS results

- Ivy, et al.
 - 168 samples: 82 Cx-pos PJI, 25 Cx-neg PJI, 61 aseptic failure

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>New Identifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vs. synovial fluid culture</td>
<td>82.9%</td>
<td>93.4% (Aseptic failures)</td>
<td>3 from Cx-pos PJI (3.7%) 4 from Cx-neg PJI (16%)</td>
</tr>
</tbody>
</table>

New Identifications:
S. aureus, Salpingoea rosetta, Afipia broomeae, Bradyrhizobium japonicum, Enterococcus faecalis, Finegoldia magna, Anaerococcus vaginalis
Goals of the clinical metagenomist

• To provide an accurate identification of pathogens to aid in the care of patients
 • We want to help patients
 • Tests must be effective, *timely*, and useful
 • We do not want to harm patients
 • Results must be accurate
Nanopore-based sequencing for PJIs

- Successful in 7 out of 7 culture-positive PJIs
Goals of the clinical metagenomist

• To provide an accurate identification of pathogens to aid in the care of patients

 • We want to help patients
 • Tests must be effective, timely, and **useful**

 • We do not want to harm patients
 • Results must be accurate
How much difference could metagenomics make?

• Looked back at our study of 408 subjects
 • Now 2 to 8 years outcome data available

• Looked at treatment and outcomes of individuals where new potential pathogens were discovered by MSS
Study Design

• 39 subjects identified
 • 32 classified as PJI
 • 7 classified as aseptic failure

• Determined whether subsequent IV antibiotic therapy covered the identified microorganism
 • Also evaluated the reason the IV therapy was chosen

• Evaluated outcomes after surgery
Aseptic failure outcomes

Aseptic failures (7)

- Treatment covered potential pathogen (1)
 - Treatment successful (1)
 - Failed treatment (0)
- Pathogen not covered (6)
 - Treatment successful (6)
 - Failed treatment (0)

New organisms: *S. aureus* (3), *C. acnes* (2), *Streptococcus sanguinis* (2)
PJIs outcomes

Covered?

Outcome?

- Treatment covered potential pathogen (29)
 - Treatment successful (25)
 • Recurrent infection (C. albicans)
 • Would drainage requiring debridement (S. epidermidis)
 • Subsequent PJI with different organism (S. lugdunensis)
 • Death (S. dysgalactiae)
 - Failed treatment (4)
- Pathogen not covered (3)
 - Treatment successful (2) (S. epidermidis)
 - Failed treatment (1)
- Treatment successful (32)
 - Failed treatment (4)
 - Pathogen not covered (3)
 - Treatment successful (2)
 - Failed treatment (1)
- Recurrent infection (Mycoplasma salivarium)
How were we able to cover new pathogens in 29 of 32 cases?

Common pathogens?

Mainly Yes….
- *Corynebacterium pseudogenitalium*
- *Cutibacterium acnes* (4)
- *Staphylococcus aureus* (10)
- *Staphylococcus epidermidis* (7)
- *Staphylococcus haemolyticus*
- *Streptococcus agalactiae* (3)
- *Streptococcus dysgalactiae* (2)
- *Streptococcus sanguinis*
- *Enterococcus faecalis*

but also No…
- *Aerococcus urinae*
- *Candida albicans*
- *Clostridium perfringens*
- *Clostridium species*
- *Facklamia languida*
- *Finegoldia magna*
- *Peptoniphilus harei*
- *Peptoniphilus lacrimalis*
Reasons for choosing correct coverage in 29 cases

• 9 cases were empiric coverage
 • Daptomycin + ertapenem (2)
 • Vancomycin + ertapenem (2)
 • Vancomycin + cefepime
 • Ceftriaxone (2)
 • Cefepime
 • Cefazolin + rifampin

• 9 cases: past prior infection with detected pathogen
 • All underwent DAIR and were on suppression

• 8 cases: therapy directed at other culture-positive organisms

• 3 cases: Other positive cultures from acute episode

Conclusion: Metagenomics can help, but a good ID physician can go a long ways
Goals of the clinical metagenomist

- To provide an accurate identification of pathogens to aid in the care of patients
 - We want to help patients
 - Tests must be effective, timely, and useful
 - We do not want to harm patients
 - Results must be accurate
Why is accuracy difficult?

- How do you define prosthetic joint infection?
- Pathogen versus background?
 - Culture-negative PJI: often low burden of disease
 - Significant overlap between common reagent contaminants and reported PJI pathogens
 - Background varies
- New pathogens to discover?
Do analysis tools affect accuracy?
Does analysis tool choice matter?

- Evaluated three commercial analysis tools
- Hand-selected 24 “challenging” samples from PJI study
 - Uncommon pathogens, polymicrobial, culture-negative, etc.
- Submitted identical sequencing files to each company for analysis

- Determined whether there were differences in final interpretations based on the tool used
 - Culture-positive species detected?
 - New identifications?
 - If so, were the “corroborated” by other tools?
Does analysis tool choice matter?

<table>
<thead>
<tr>
<th></th>
<th>LMAT</th>
<th>CosmosID</th>
<th>One Codex</th>
<th>IDbyDNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture- positive PJIs (16 samples)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species detected (24)</td>
<td>22</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Additional species detected:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corroborated</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Uncorroborated</td>
<td>0</td>
<td>1</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Culture-negative PJIs (4 samples)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional species detected:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corroborated</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Uncorroborated</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>
Why is accuracy important?

• An accurate diagnosis can ideally lead to narrower and more effective therapy with better outcomes and fewer adverse effects.

• An inaccurate diagnosis can lead to harm:
 • Overtreatment if additional non-pathogens reported
 • Possible loss of treatment if only non-pathogen(s) reported

• A negative test will not create harm

• You cannot rely on physicians to sort out real versus not real
Summary

• Metagenomics has a role for PJI pathogen detection
• At this time metagenomic sequencing should be reserved for when conventional testing fails
• Accurate results will be key for clinical integration
• For PJI, specificity should trump sensitivity
Acknowledgements

Robin Patel, MD

Mayo Clinic Microbiome Program

Nicholas Chia, PhD

Patricio Jeraldo, PhD

Matthew Abdel, MD

Mayo Clinic Orthopedic Surgery

Mayo Clinic Medical Genome Facility

Funding: NIH R01 CA179243
Thank you

Thoendel.matthew@mayo.edu
Pitfalls? How…?

- Interpreting the data is hard
- Tools were not designed to answer whether a pathogen is present
- As pathogen loads go down, reagent contaminant signals go up

<table>
<thead>
<tr>
<th>Sample #1 (with read #'s)</th>
<th>Sample #2</th>
<th>Sample #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus 334,354</td>
<td>Acinetobacter 4,915</td>
<td>Staphylococcus 666</td>
</tr>
<tr>
<td>Malassezia 8</td>
<td>Streptococcus 873</td>
<td>Cutibacterium 161</td>
</tr>
<tr>
<td>Corynebacterium 2</td>
<td>Prevotella 288</td>
<td>Streptococcus 141</td>
</tr>
<tr>
<td></td>
<td>Bradyrhizobium 326</td>
<td>Acinetobacter 133</td>
</tr>
<tr>
<td></td>
<td>Oribacterium 193</td>
<td>Malassezia 52</td>
</tr>
</tbody>
</table>

- *S. aureus* PJI
- Aseptic failure
- *S. epidermidis* PJI
Lessons learned from MSS analysis

• Simple read count or percentage cutoffs aren’t sufficient
 • Host DNA content and multiplexing influences these too much

• Subtracting negative control reads isn’t easy
 • Contains potential pathogens, changes over time

• Different tools can give different results

• A combination of metrics will likely be optimal
 • Signal strength, genome coverage, signal vs. internal controls

• A false positive result is much more dangerous than a negative result
Proposed role for MSS

• Currently: When all else fails
 • Cultures
 • Directed PCRs
 • 16S rRNA gene PCR
 • Serologic tests

• Best way to preserve samples?

• Future needs:
 • Faster and cheaper
 • Avoiding false positives

Alexander McAdam. J Clin Micro 2018, 56(8)
<table>
<thead>
<tr>
<th>Study</th>
<th>Samples</th>
<th>Microbial Enrichment</th>
<th>Extraction</th>
<th>Library + Sequencer</th>
<th>Analysis Tools</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street, et al. J Clin Micro, 2017</td>
<td>Sonicate fluid (n=97)</td>
<td></td>
<td>Pathogen lysis tubes + EtOH precipitation</td>
<td>Nextera XT and MiSeq</td>
<td>Kraken</td>
<td>Sonicate fluid culture ± PPT</td>
</tr>
<tr>
<td>Thoendel, et al. CID, 2018</td>
<td>Sonicate fluid (n=408)</td>
<td>MolYsis</td>
<td>MoBio Bacteremia DNA kit</td>
<td>NEBNext Ultra and HiSeq 2500</td>
<td>LMAT + Metaphlan2</td>
<td>Sonicate fluid culture ± PPT ± synovial fluid culture</td>
</tr>
</tbody>
</table>

LMAT = Livermore Metagenomics Analysis Toolkit
PPT = Periprosthetic tissue (intraoperative)