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Contamination 

• Nucleic acid extraction kits (kitome) 

• Reagents and diluents 

• Host 

• Post-sampling environment (i.e. airborne particles, index switching, 
crossovers from past sequencing runs) 

• Misclassification related to the classification algorithms used and/or 
the reference databases available 

Schlaberg et al., Arch Pathol Lab Med 2016; Martí, PLOS Comp Biol 2019;15(4):e1006967.  



Contamination? 

Couto et al., Sci Rep 2018;8:13767.  

78% 60% 

78% 24% 



Contamination? 

• Most of the studies deal with contamination based on ad hoc cut-offs 
or thresholds… 



Peabody et al. BMC Bioinformatics (2015) 16:363  



Tools to tackle contamination 





Consideration 

• Total sample DNA (T) is a mixture of two components: 
• Contaminating DNA (C) present in uniform concentration across samples  

• True sample DNA (S) present in varying concentration across samples 

 

Davis et al. Microbiome (2018) 6:226  

𝑇 = 𝐶 + 𝑆 



First assumption 

• “Sequences from contaminating taxa are likely to have frequencies 
that inversely correlate with sample DNA concentration.” 

 

 

Davis et al. Microbiome (2018) 6:226  

Not suitable for low-
biomass samples: 
C ~ S or C > S 

Frequency-based 
identification 



Salter et al. BMC Biology 2014, 12:87  



Second assumption 

• “Sequences from contaminating taxa are likely to have higher 
prevalence in control samples than in true samples.” 

• C negative control > C true sample  

• Negative control S ~ 0,  

• True sample S > 0 

 

 

Davis et al. Microbiome (2018) 6:226. 

Prevalence-based 
identification 



Lazarevic et al. BMC Microbiology (2016) 16:73  



Algorithm 

• Developed in R 

• Contains two modules: 
• isContaminant function (score statistic P, threshold p>0.01, frequency-based 

identification, prevalence-based identification, combined-based identification) 

• isNotContaminant function (score statistic 1 – P, p<0.05, prevalence-based 
identification) for low biomass samples 

• Requirements: 
• A feature table of the relative abundances or frequencies of sequence features in each 

sample (e.g., an OTU table) in format .biom, and  

• (1) quantitative DNA concentrations for each sample, often obtained during amplicon or 
shotgun sequencing library preparation in the form of a standardized fluorescence intensity 
(e.g., PicoGreen), and/or  

• (2) sequenced negative control samples, preferably DNA extraction controls to which no 
sample DNA was added.  

 

 
Davis et al. Microbiome (2018) 6:226  



4 species (threshold < 0.5): 
Staphylococcus epidermidis 
Serratia sp. 
Citrobacter freundii 
Clostridium botulinum 

isNotContaminant, threshold < 0.5 or 0.3 

37 species (threshold < 0.3): 
Multiple Staphylococcus spp. 
Serratia sp. 
Citrobacter freundii 
Clostridium botulinum 
Klebsiella pneumoniae 
Streptococcus anginosus 



Conclusions 

• The classification accuracy is dependent on the number of samples in 
which a sequence feature appeared (its prevalence) → depends on 
patterns across samples to identify contaminants (low sensitivity for 
detecting contaminants that are found in very few samples) → so 
probably 4-5 samples is not enough to draw any conclusions 

• Is not designed to remove cross-contamination → severely affected 
by this phenomenon 

 

 

Davis et al. Microbiome (2018) 6:226  



Martí (2019); PLoS Comput Biol 15(4): e1006967.  



Two strategies 

1. Accounts for the score level of the classifications in every single step 
provided by the taxonomic classifier; 

2. It uses a removal algorithm that detects and selectively eliminates 
various types of contamination, including crossovers. 

 

• Supports high-performance classifiers such as Centrifuge, LMAT, 
CLARK, CLARK-S and Kraken (and Kraken2), but alternative classifiers 
can also be used. 

Martí (2019); PLoS Comput Biol 15(4): e1006967.  



Recentrifuge 

• Depending on the relative frequency  of the “candidate contaminating 
taxa” in the control samples and if they are present in other 
specimens, the algorithm classifies them in contamination level 
groups: critical, severe, mild, and other.   

• Except for the “other”, the candidate contaminants are removed from 
non-control groups. 

• The “other contaminants” group is checked for crossover 
contamination, so those taxon are eliminated from all samples except 
for the one or ones selected as the source of “pollution”. 

 

Martí (2019); PLoS Comput Biol 15(4): e1006967.  



Before Recentrifuge 

Why? 



minscore > 10 



Conclusion 

• Recentrifuge performs better than Decontam and is much more user 
friendly 

• It can lead to “false contaminants”, but raising the minscore should 
solve the problem 



Conclusion 

• New tools for “Decontamination” are available and can be validated 
for clinical metagenomics 

• Always include negative controls for each run and so you can better 
predict the contaminants using the tools mentioned before 



Optimized host depletion methods 

Nilay Peker Leonard Schüle 
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Posters 
Evaluation of nucleic acid extraction kits for Shotgun Metagenomic Sequencing 
Sample preparation for diagnosis of bloodstream infections by Shotgun Metagenomics  
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New assembler - Flye 



Improving outbreak 
surveillance with rapid- and 

long-read sequencing 
VRE as an example 

Carolien Doorenboos 



Vancomycin-resistant enterococci 

• Enterococcus faecium and Enterococcus faecalis 
• Commensals of human gut 

• Associated with hospital acquired infections (mainly E. faecium) 

• Vancomycin resistance in E. faecium and E. faecalis is mediated by the 
vanA and vanB gene 

• In the Netherlands VRE carriage is an indication for hospital care in 
isolation to prevent transmission 

• High risk patients and wards are routinely screened 

 

32 



Screening for VRE 

33 

VRE screening protocol UMCG 

Rectal 
swab 

Selective 
liquid broth 

RT-PCR 
Targets: 
• E. faecium 
• vanA 
• vanB 

If PCR positive: 
Oxoid Brilliance VRE 

(72h) 

Day 0 Day 1 Day 2-4 Day 3-5 

Axenic culture 

Day 4-6 

Resistance testing 



34 

VRE screening protocol UMCG 

Rectal 
swab 

Selective 
liquid broth 

RT-PCR 
Targets: 
• E. faecium 
• vanA 
• vanB 

Day 0 Day 1 Day 2-4 
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MinION sequencing 

(Real time) data analysis 

Screening for VRE with the MinION 



Data analysis for long read sequencing 

• Basecalling     MinIT/Guppy √ 

• Demultiplexing    qcat/fastp √ 

• Trimming of barcodes and adapters qcat, filtlong √ 

• Assembly     flye, canu, metaspades √ 

• Polishing     nanopolish √, medaka, pilon, racon 

• Taxonomy assignment   Kraken2 √ 

• Resistance     ABRicate √ 

• Phylogeny     Ridom SeqSphere+ √ 

• Visualization of assembly   Bandage √ 

 



First preliminary results 

• 5 samples 
• 5/5 E. faecium and either vanA or vanB in RT-PCR 

• 3/5 VRE in culture 

 

36 



37 

• Bandage with flye –meta assembly 

BC03 
VRE+ 

BC04 
VRE- 

BC05 
VRE- 

BC06 
VRE+ 

BC07 
VRE+ 

none 
N/A 



wgMLST analysis using Ridom SeqSphere+ v6.0 



mcr1 gene 

Leonard Schüle 

IDENTIFICATION AND CHARACTERIZATION OF 
VIRUSES DIRECTLY FROM BLOOD PLASMA AND 
NASAL SWABS FROM PIGS FOR THE EARLY 
WARNING OF INFECTIOUS DISEASES.  

Found an mcr1 gene in one sample; 
Different assembly strategies: 
- Short-read assembly with CLC Genomics Workbench, 

SPAdes, SPAdes --meta, Megahit 
- Short-read assembly with scaffolding using long reads 

using CLC Genomics Workbench 
- Long-read assembly with CANU  
- Long-read assembly with Flye --meta --plasmid √ 

pLEO1 18 176 bp 
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