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Table 2
Summary of the take-home messages and related key-points of the ICCMg2. CLIA: Clinical Laboratory Improvement Amendments. ISO: International Organization for
Standardization.

Message Key points

Microbiome studies Push the identification of bacteria up to the strain level.

Case-control studies: towards more complex design to address causality.

Importance of a biological/clinical expertise along with the bioinformatic and biostatistical analysis
The importance of contaminants in clinical metagenomics What negative control(s) should be used?

How to substract the contaminants from the results?
Towards a universal pipeline and consequences on the nucleic acids Consider viruses (DNA and RNA), bacteria, antibiotic resistance genes, fungi, parasites in a single

extraction pipeline.

Extract DNA and RNA.

Consider the host's gene expression.

Several efficient solutions (most unpublished yet) to remove human DNA.

The increasing fastness of clinical metagenomics Fast results within hours with Nanopore sequencing, yet quality still not optimal.
“New” culprits identified by metagenomic studies Pathogenicity of unexpected microbes?

Already actionable results when conventional methods fail to identify any causative microbe.
Quality Adapt CLIA or ISO15189 requirements to the clinical metagenomics workflow.

Validation of the method: towards a confidence score (like mass spectrometry?)
Are clinical parameters the best comparator to validate clinical metagenomics tests?
Antibiotic resistance EUCAST consultation: the WGS antibiogram not for now, but works well for some couples
bacterium-antibiotic.
Metagenomics allows to identify new resistance genes.
Need for a database of resistance genes and associated metadata.
Towards a clinical resistance with clinical metagenomics instead of an antimicrobial resistance?




Contamination
e

* Nucleic acid extraction kits (kitome)
* Reagents and diluents
* Host

* Post-sampling environment (i.e. airborne particles, index switching,
crossovers from past sequencing runs)

* Misclassification related to the classification algorithms used and/or
the reference databases available

Schlaberg et al., Arch Pathol Lab Med 2016; Marti, PLOS Comp Biol 2019;15(4):e1006967.



Contamination?
L

Total number of True False ] False Sensitivity | PPV
Method bacteria identified® | positives® | positives [ negatives | (%) (%)
Culture/ MALDI-TOF 9 9 0 0 100% 100%
MetaPhlAn (BaseSpace) 16 7 9 2 78% 44%
Genius (BaseSpace) 35 8 27 1 89% 23%
Kraken (BaseSpace) 959 7 952 2 78% 1%
Taxonomer (Full Analysis) 4649 8 4641 1 89% 0%
CosmosID 35 8 27 1 89% 23%
Gonomics Workberh v10.0.) |17 6 g 3 67% 35%
Genomics Workbench v10.01). | 12 8 4 1 89% 67%
Kraken (Unix) 198 7 191 2 78% 4%
MetaPhlAn2 (Unix) 15 7 6 4 78% 60%
MIDAS (Unix) 34 7 (26 )2 78% 24%

Table 5. Performance of the different taxonomic classification methods for each sample. Sensitivity and positive
predictive value were calculated using culture/MALDI-TOF as standards. “Excluding the samples with non-
identified anaerobic bacteria (Samples 2 and 5). Abbreviations: PPV, positive predictive value.

Couto et al., Sci Rep 2018;8:13767.



Contamination?
L

 Most of the studies deal with contamination based on ad hoc cut-offs
or thresholds...



Table 3 Number of correctly and incorrectly predicted species® for different thresholds® without clade exclusion. Some methods vastly
overpredict the number of species, even when the true number of species is low (in this case the true number of species is 11)

No cutoff® Cutoff > 0.01 %° Cutoff > 0.1 %° Cutoff > 1 %°

Method Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect
CARMA3 11 56 11 4 11 0 10 0
CLARK 11 364 11 25 11 5 11 0
DiScRIBINATE RAPSearch2¢ N/A N/A N/A N/A N/A N/A N/A N/A
Kraken 11 327 11 25 11 5 11 0
Filtered Kraken 1 14 11 1 11 0 11 0
MEGAN4 BlastN 11 110 11 19 11 3 9 1
MEGAN4 RAPSearch2 11 183 11 41 11 1 9 1
MetaBin 11 561 10 77 10 6 10 1
MetaCV 11 1226 11 232 11 6 10 1
MetaPhyler 11 9 11 9 11 5 7 1
PhymmBL® N/A N/A N/A N/A N/A N/A N/A N/A
RITA 11 466 10 80 10 10 10 1
TACOA® N/A N/A N/A N/A N/A N/A N/A N/A
MG-RAST best hit 11 927 10 180 10 36 10 8
MG-RAST LCA 11 476 11 69 11 5 11 1

| ————————————————
@Using the FW in vitro dataset of sequenced reads from 11 species

PA cutoff of > x %, for example 0.01 %, would indicate that only species with a predicted abundance of at least x % of the total set of predictions were considered.
Correctly predicted species are any of the 11 species that were used to simulate the reads in the dataset, whereas any other predicted species was incorrect
“These methods do not predict to the species level at this read length (they require longer read lengths). See additional analyses at other levels of clade exclusion

Peabody et al. BMC Bioinformatics (2015) 16:363



Tools to tackle contamination
[ —

Davis et al. Microbiome (2018) 6:226

https://doi.org/10.1186/540168-018-0605-2 M icro b i O m e

METHODOLOGY Open Access

Simple statistical identification and removal @
of contaminant sequences in marker-gene
and metagenomics data
RESEARCH ARTICLE

1,2,5

Nicole M. Davis', Diana M. Proctor®?, Susan P. Holmes®, David A. Relman'#® and Benjamin J. Callahan®”"

Recentrifuge: Robust comparative analysis
and contamination removal for
metagenomics

Jose Manuel Martic *

Institute for Integrative Systems Biology (I°SysBio), Valencia, Spain

* jose.m.marti@uv.es



Davis et al. Microbiome (2018) 6:226

https://doi.org/10.1186/s40168-018-0605-2 M icro b i O m e

METHODOLOGY Open Access

Simple statistical identification and removal &~
of contaminant sequences in marker-gene
and metagenomics data

Nicole M. Davis' Diana M. Proctor®®, Susan P. Holmes* David A. Relman'*”

and Benjamin J. Callahan®”



Consideration
[ —

* Total sample DNA (T) is a mixture of two components:
e Contaminating DNA (C) present in uniform concentration across samples
* True sample DNA (S) present in varying concentration across samples

r=C+S$

Davis et al. Microbiome (2018) 6:226



First assumption
e

» “Sequences from contaminating taxa are likely to have frequencies

that inversely correlate with sample DNA concentration.”

Davis et al. Microbiome (2018) 6:226

fe=C/(C+S)~1/T
fo=S/(C+8)~1

. total reads

25
U — .
' ' ' > §_§ \ . genuine rea ds
= . contaminant reads
sequence
sample [DNA] equimolar total [DNA]
well-mixed
total DNA
.o €qual, low-level contaminant DNA correlates
® contaminating DNA inversely with total DNA

Fig. 1 Mixture model of contaminants and non-contaminants in MGS experiments. Contaminant DNA is expected to be present in approximately
equal and low concentrations across samples, while sample DNA concentrations can vary widely. As a result, the expected frequency of
contaminant DNA varies inversely with total sample DNA concentration (red), while the expected frequency of non-contaminant DNA does

not (blue)

Not suitable for low-
biomass samples:
C~SorC>S

Frequency-based
identification
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p—

100%

012 3 45

MB kit

Salter et al. BMC Biology 2014, 12:87

012345

012 3

Number of serial dilutions

FP kit

PSP kit

S

:

Proportion of total sequences excluding S. bongori &

0% +—
012345

012345

QlA kit

Other

m S. bongori

012345 0123 012345

Number of serial dilutions

MB kit FP kit

PSP kit

water

Other
Planctomycetaceae

B Pseudomonadaceae

B Moraxellaceae

B Enterobacteriaceae

B Flavobacteriaceae

M Polyangiaceae

W Bacteriovoracaceae

B Ruminococcaceae

B Lachnospiraceae
unclassified Chlamydiales

H Neisseriaceae

B unclassified Burkholderiales

B Oxalobacteraceae

W Comamonadaceae

B Burkholderiaceae

u Sphingobacteriaceae

M Chitinophagaceae

B Cytophagaceae

B Bacteroidaceae

™ Streptococcaceae

M Lactobacillaceae

B Enterococcaceae

B Aerococcaceae

u Staphylococcaceae

B Paenibacillaceae

B Bacillaceae
Sphingomonadaceae
Rhodobacteraceae
Xanthobacteraceae

¥ Phyllobacteriaceae

B Methylobacteriaceae

B Bradyrhizobiaceae

® Caulobacteraceae
Coriobacteriaceae
Bifidobacteriaceae
Propionibacteriaceae
Micrococcaceae
Microbacteriaceae
Corynebacteriaceae
Acidobacteriaceae



Second assumption
-

» “Sequences from contaminating taxa are likely to have higher
prevalence in control samples than in true samples.”

* C negative control > C true sample
* Negative control S ~ 0,
* True sample S >0

Prevalence-based
identification

Davis et al. Microbiome (2018) 6:226.
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(no dilution) to 1E-8 (1078). For EC, SA, NEC_B and NEC_W, the data obtained from DNA extractions performed on three occasions (Exp1-Exp3)
are presented from left to right. NTC_W were performed in duplicate for each of the three series. EC, E. coli; SA, S. aureus. NEC_W, negative
extraction controls obtained substituting culture for water; NEC_B, negative extraction controls obtained by substituting culture for lysis buffer; NTC_W,
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Lazarevic et al. BMC Microbiology (2016) 16:73



Algorithm

* DevelopedinR

 Contains two modules:

e jsContaminant function (score statistic P, threshold p>0.01, frequency-based
identification, prevalence-based identification, combined-based identification)

 isNotContaminant function (score statistic 1 — P, p<0.05, prevalence-based
identification) for low biomass samples

* Requirements:

* A feature table of the relative abundances or frequencies of sequence features in each
sample (e.g., an OTU table) in format .biom, and

* (1) guantitative DNA concentrations for each sample, often obtained during amplicon or

shotgun sequencing library preparation in the form of a standardized fluorescence intensity
(e.g., PicoGreen), and/or

* (2) sequenced negative control samples, preferably DNA extraction controls to which no
sample DNA was added.

Davis et al. Microbiome (2018) 6:226



Sample | Cultureresult | Conventional identification | WGS-based SEoteuninclapen Onics
number | (CFU)?* (MALDI-TOF) identification Kraken® MIDAS* MetaPhlAn®
10° E. faecium E. faecium E. faecium (34.6%) E. faecium (62.0%) E. faecium (66.6%)
1 10° S. haemolyticus S. haemolyticus S. haemolyticus (10.1%) | S. haemolyticus (28.0%) | S. haemolyticys (27.7%)
10 C. glabrata — — — —
. . 10° E. avium —* Not identified* Not identified* Not identified*
ISNO tCOn tam inan t t h res h o) | d < O 5 or O 3 2 1 E. coli — Not identified* Not identified* Not identified*
) . . Not determined | Anaerobes —* Several species (29.5%) | Several species (100.0%) | Several species (100.0%)
3 1 S. epidermidis —* S. aureus (0.2%) Not identified* Not identified*
4 10° S. aureus S. aureus S. aureus (0.73%) S. aureus (100%) S. aureus (100%)
r >105> 105 E. coli E. coli E. coli M) E. coli (64%) E. coli (8.5%
0 K. oxytoca K. oxytoca K. oxytoca (0.5%) K. oxytoca (0.3%) K. oxytoca (0.3%) i
5 10° S. anginosus — S. anginosus (0.07%) S. anginosus (0.01%) Streptococcus spp. (0.09%)
- > @Emes @ - L] - L] -8 Not determined E. faecalis E. faecalis E. faecalis (0.3%) E. faecalis (0.9%) E. faecalis (0.7%)
100 etermined | 4 haerobes — Several species (12.7%) | Several species (96.7%) | Several species (90.4%)
C. albicans —* — — —
ke . N * 6 10° E. faecium E. faecium E. faecium (0.77%) Not identified* Not identified*
7 10? S. aureus —* S. aureus (82.9%) S. aureus (100%) S. aureus (100%)
LA 8 10° O. intermedium O. intermedium O. anthropi (21.3%) O. intermedium (99.4%) | O. intermedium (99.1%)
9 10° S. aureus S. aureus S. aureus (22.9%) S. aureus (100%) S. aureus (100%)
05 | s M 103 S. marcescens —* S. marcescens (64.7% S. marcescens (99.1% S. marcescens (100%
37 species (threshold < 0.3): 4 species (threshold < 0.5):
0.3 —_— - o e % = S . S .
ol L Clostridium botulinum Clostridium botulinum
T T T T T T H H
0 100 200 300 400 500 Klebsiella pneumoniae
ind
Negative
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10 control
Peritoneal Synovial Synovial Pus Pus .
Sample type fluid Pus (abscess) fuid fuid Pus (abscess) (empyema) | (empyema) Bone biopsy | Pus (abscess) | Sputum Water
DNA Ultra-Deep | Ultra-Deep | Ultra-Deep | Ultra-Deep | Ultra-Deep | QIAamp QIAamp QIAamp
extraction Microbiome | Microbiome | Microbiome | Microbiome | Microbiome | DNA DNA Micro-DX™ | Micro-DX™ | Micro-DX™ | DNA
Prep Prep Prep Prep Prep Microbiome | Microbiome | (Molzym) (Molzym) (Molzym) Microbiome
method
(Molzym) (Molzym) (Molzym) (Molzym) (Molzym) Kit (Qiagen) | Kit (Qiagen) Kit (Qiagen)
Total
number of 5,892,978 9,603,346 8,615,810 6,078,166 8,368,930 2,912,802 1,486,700 6,534,866 6,173,132 7,596,836 1,730,738
reads
i\::gszdainst 5,249,063 7,828.746 8,254,594 6,015,945 309,588 2,877,066 922,932 229,149 6,081,612 7,337,832 1,706,861
hgl9 & (89.2%) (81.6%) (95.9%) (99.0%) (3.7%) (98.8%) (62.2%) (3.5%) (98.5%) (96.7%) (98.9%)
Unmapped | 632,951 1,770,558 355,200 61,099 8,052,272 34,506 561,772 6,303,803 89,922 235,520 19,805
reads (10.8%) (18.4%) (4.1%) (1.0%) (96.3%) (1.1%) (37.8%) (96.5%) (1.5%) (3.3%) (1.2%)




Conclusions

* The classification accuracy is dependent on the number of samples in
which a sequence feature appeared (its prevalence) - depends on
patterns across samples to identify contaminants (low sensitivity for
detecting contaminants that are found in very few samples) - so
probably 4-5 samples is not enough to draw any conclusions

* |s not desighed to remove cross-contamination - severely affected
by this phenomenon

Davis et al. Microbiome (2018) 6:226
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Two strategies

1. Accounts for the score level of the classifications in every single step
provided by the taxonomic classifier;

2. It uses a removal algorithm that detects and selectively eliminates
various types of contamination, including crossovers.

e Supports high-performance classifiers such as Centrifuge, LMAT,

CLARK, CLARK-S and Kraken (and Kraken2), but alternative classifiers
can also be used.

Marti (2019); PLoS Comput Biol 15(4): e1006967.



Recentrifuge
-

* Depending on the relative frequency of the “candidate contaminating
taxa” in the control samples and if they are present in other
specimens, the algorithm classifies them in contamination level
groups: critical, severe, mild, and other.

* Except for the “other”, the candidate contaminants are removed from
non-control groups.

* The “other contaminants” group is checked for crossover
contamination, so those taxon are eliminated from all samples except
for the one or ones selected as the source of “pollution”.

Marti (2019); PLoS Comput Biol 15(4): e1006967.



10® E. faecium E. faecium E. faecium (34.6%) E. faecium (62.0%) E. faecium (66.6%)

10° S. haemolyticus [ Iyti S. h Iyticus (10.1%) | S. haemolyticus (28.0%) | S. haemolyticys (27.7%)
10 C. glabrata — — — —

10° E. avium — Not identified* Not identified* Not identified*

1 E. coli * Not identified* Not identified* Not identified*

Not determined | Anaerobes # Several species (29.5%) | Several species (100.0%) | Several species (100.0%)
1 S. epidermidis — S. aureus (0.2%) Not identified* Not identified*
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Conclusion
-

* Recentrifuge performs better than Decontam and is much more user
friendly

* It can lead to “false contaminants”, but raising the minscore should
solve the problem



Conclusion
-

* New tools for “Decontamination” are available and can be validated
for clinical metagenomics

* Always include negative controls for each run and so you can better
predict the contaminants using the tools mentioned before



Optimized host depletion methods
-

Fungi
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New assembler - Flye
-

ARTICLES

nature
https://doi.org/10.1038/541587-019-0072-8 blOte(:hn()lOgy

Assembly of long, error-prone reads using repeat
graphs

Mikhail Kolmogorov®?, Jeffrey Yuan©2, YuLin®?3 and Pavel A. Pevzner®™™

Accurate genome assembly is hampered by repetitive regions. Although long single molecule sequencing reads are better able
to resolve genomic repeats than short-read data, most long-read assembly algorithms do not provide the repeat character-
ization necessary for producing optimal assemblies. Here, we present Flye, a long-read assembly algorithm that generates
arbitrary paths in an unknown repeat graph, called disjointigs, and constructs an accurate repeat graph from these error-rid-
dled disjointigs. We benchmark Flye against five state-of-the-art assemblers and show that it generates better or comparable
assemblies, while being an order of magnitude faster. Flye nearly doubled the contiguity of the human genome assembly (as
measured by the NGA50 assembly quality metric) compared with existing assemblers.



Improving outbreak
surveillance with rapid- and
long-read sequencing

VRE as an example

Carolien Doorenboos



Vancomycin-resistant enterococci
e

* Enterococcus faecium and Enterococcus faecalis
 Commensals of human gut
» Associated with hospital acquired infections (mainly E. faecium)

* Vancomycin resistance in E. faecium and E. faecalis is mediated by the
vanA and vanB gene

* In the Netherlands VRE carriage is an indication for hospital care in
isolation to prevent transmission

* High risk patients and wards are routinely screened



Screening for VRE

. wt

Mogeljk
verdacht

Day 3-5 Day 4-6
Rectal Selective RT-PCR If PCR positive:
swab liquid broth  Targets: , Oxoid Brilliance VRE
* E. faecium
(72h)
* vanA
* vanB

Axenic culture

Resistance testing

VRE screening protocol UMCG



Screening for VRE with the MinION

Day 2-4

Selective RT-PCR

Rectal MinlON sequencing
swab liquid broth ~ Targets:
 E. faecium (Real time) data analysis
* vanA
* vanB

VRE screening protocol UMCG



Data analysis for long read sequencing
-

* Basecalling MinIT/Guppy V

* Demultiplexing qcat/fastp Vv

* Trimming of barcodes and adapters  qcat, filtlong v

* Assembly flye, canu, metaspades v

* Polishing nanopolish Vv, medaka, pilon, racon
* Taxonomy assignment Kraken2 v

* Resistance ABRicate v

* Phylogeny Ridom SeqSphere+ v

* Visualization of assembly Bandage V



First preliminary results
-

o 5 Samples ID W Rleal:lﬂcun‘t
e 5/5 E. faecium and either vanA or vanB in RT-PCR o |0

° 3/5 VRE in culture Bco3 [ 312,069

Bco4 [ 435,090
Bcos [ 267,628

Bcos [l 375.240

I e Bco7 M 574,237
97% [l BACTERIA acos | 46
3% ] EUKARYOTA |
< 1% ] VIRUSES BCO9 | 113
BC10 |12
BC11 | 138
BC12 |69

Mo Barcode [l 286,337
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* Bandage with flye —meta assembly
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wgMLST analysis using Ridom SeqgSphere+ v6.0
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IDENTIFICATION AND CHARACTERIZATION OF
VIRUSES DIRECTLY FROM BLOOD PLASMA AND
NASAL SWABS FROM PIGS FOR THE EARLY
WARNING OF INFECTIOUS DISEASES.

5 food

PRO-TEC-TS

Food production u:*hnu:ul:ugu:*'
for trans-boun

Leonard Schiile

Found an mcrl gene in one sample;

Different assembly strategies:

- Short-read assembly with CLC Genomics Workbench,
SPAdes, SPAdes --meta, Megahit

- Short-read assembly with scaffolding using long reads
using CLC Genomics Workbench

- Long-read assembly with CANU

- Long-read assembly with Flye --meta --plasmid v

mcrl gene

pLEO1 18 176 bp
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