Genome-resolved metagenomics for tracking antibiotic resistant pathogens in patients

Tim Stinear 18th October 2019

Conflicts to declare

None

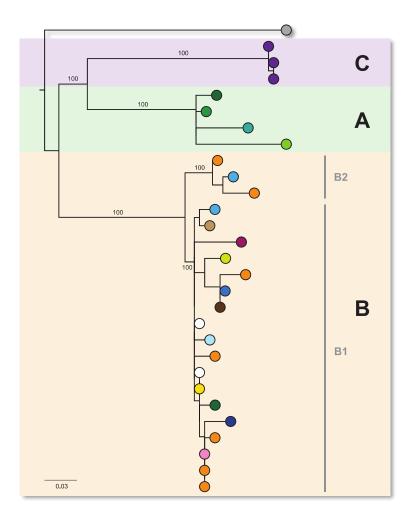
Imagine this scenario

Jason Kwong

The promise of clinical metagenomics

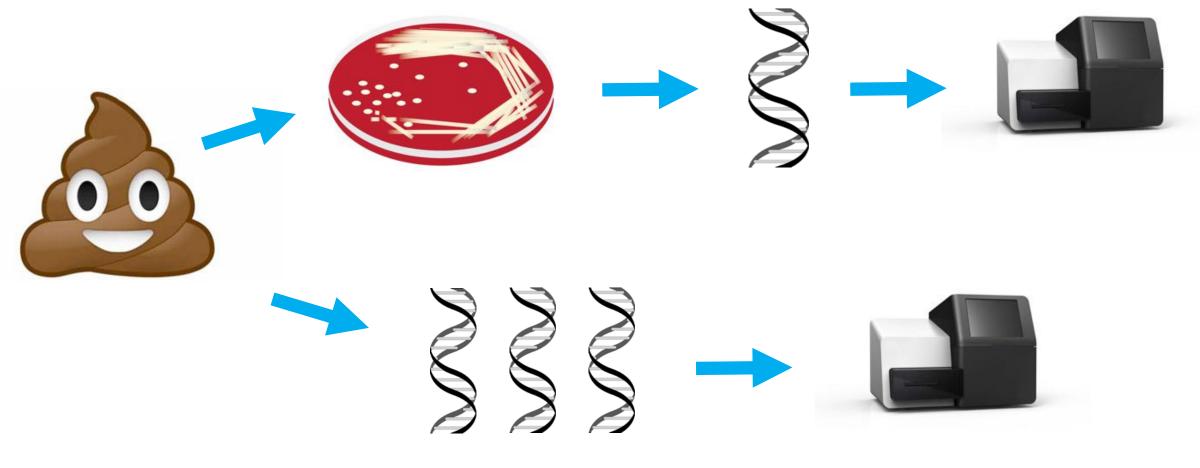
- Reduce diagnostic delay
- Infer potential antibiotic resistance
- Identify transmission events

Diagnosis


#	Clinical presentation	Sample type	Metagenomics result	Clinical result
1	Eosinophilic meningitis	CSF	No result	Angiostrongylus
2	Meningitis	CSF	S. pneumoniae	S. pneumoniae
3	Meningoencephalitis	CSF	No result	Lupus cerebritis
4	Recurrent brain abscess	CSF	No result	Neuro Behcet's
5	Sepsis	Blood (EDTA)	S. pneumoniae	S. pneumoniae (low level)
6	Sepsis	Blood (EDTA)	N. meningitidis	N. meningitidis
7	Sepsis	Blood (blood culture)	Failed library prep	S. aureus
8	Sepsis	Blood (blood culture)	Failed library prep	E. coli
9	Liver abscess	Aspirate	Entamoeba	Entamoeba
10	Outbreak investigation	Faeces	KPC + VRE	KPC colonisation
11	Outbreak investigation	Rectal swab	KPC	KPC
12	Endocarditis	Aortic valve tissue	No result	Unknown (?M. chimaera)
13	Pancytopenia	Bone marrow aspirate	Leishmania donovani	Leishmania spp.
14	Prosthetic joint infection	Synovial fluid	No result	Ureaplasma
15	Meningoencephalitis	CSF	Pending	Unidentified organism

#	Clinical presentation	Sample type	Metagenomics result	Clinical result
1	Eosinophilic meningitis	CSF	No result	Angiostrongylus
2	Meningitis	CSF	S. pneumoniae	S. pneumoniae
3	Meningoencephalitis	CSF	No result	Lupus cerebritis
4	Recurrent brain abscess	CSF	No result	Neuro Behcet's
5	Sepsis	Blood (EDTA)	S. pneumoniae	S. pneumoniae (low level)
6	Sepsis	Blood (EDTA)	N. meningitidis	N. meningitidis
7	Sepsis	Blood (blood culture)	Failed library prep	S. aureus
8	Sepsis	Blood (blood culture)	Failed library prep	E. coli
9	Liver abscess	Aspirate	Entamoeba	Entamoeba
10	Outbreak investigation	Faeces	KPC + VRE	KPC colonisation
11	Outbreak investigation	Rectal swab	KPC	KPC
12	Endocarditis	Aortic valve tissue	No result	Unknown (?M. chimaera)
13	Pancytopenia	Bone marrow aspirate	Leishmania donovani	Leishmania spp.
14	Prosthetic joint infection	Synovial fluid	No result	Ureaplasma
15	Meningoencephalitis	CSF	Pending	Unidentified organism

#	Clinical presentation	Sample type	Metagenomics result	Clinical result
1	Eosinophilic meningitis	CSF	No result	Angiostrongylus
2	Meningitis	CSF	S. pneumoniae	S. pneumoniae
3	Meningoencephalitis	CSF	No result	Lupus cerebritis
4	Recurrent brain abscess	CSF	No result	Neuro Behcet's
5	Sepsis	Blood (EDTA)	S. pneumoniae	S. pneumoniae (low level)
6	Sepsis	Blood (EDTA)	N. meningitidis	N. meningitidis
7	Sepsis	Blood (blood culture)	Failed library prep	S. aureus
8	Sepsis	Blood (blood culture)	Failed library prep	E. coli
9	Liver abscess	Aspirate	Entamoeba	Entamoeba
10	Outbreak investigation	Faeces	KPC + VRE	KPC colonisation
11	Outbreak investigation	Rectal swab	KPC	KPC
12	Endocarditis	Aortic valve tissue	No result	Unknown (?M. chimaera)
13	Pancytopenia	Bone marrow aspirate	Leishmania donovani	Leishmania spp.
14	Prosthetic joint infection	Synovial fluid	No result	Ureaplasma
15	Meningoencephalitis	CSF	Pending	Unidentified organism


Genotyping AMR detection

- State-wide outbreak of KPC-producing *Klebsiella* pneumoniae
- Comprised three transmission networks
- Obtained faecal sample from patient implicated in outbreak

Kwong JC, et al., PeerJ 2018

Sequencing from culture

Metagenomics

Jason Kwong

Andre Mu

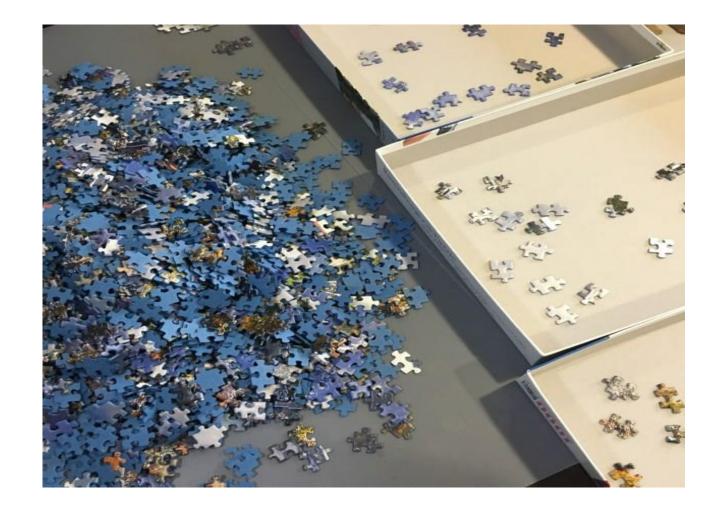
Sequence yield

IlluminaReads:22.7MYield:6.4 GbpQ score:33

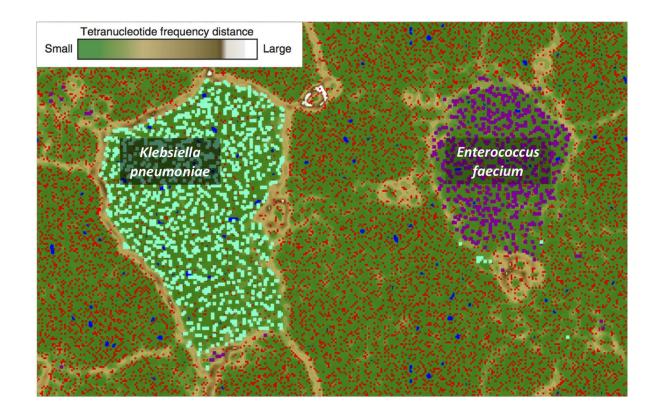
Detection of antimicrobial resistance genes in Patient A metagenome

Contig	Gene	Gaps	% Coverage	% Identity
FM_1035	blaKPC-2_1	0	100	100

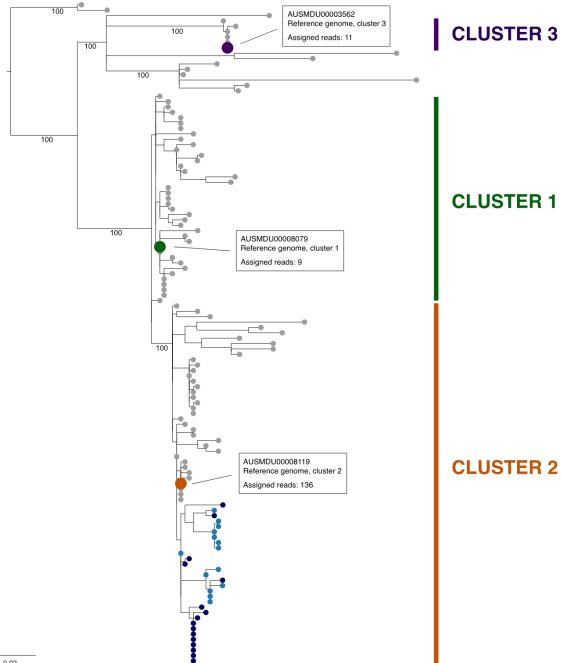
Detection of antimicrobial resistance genes in Patient A metagenome

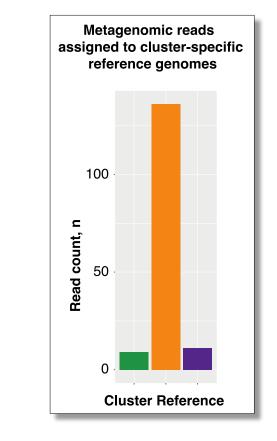

Contig	Gene	Gaps	% Coverage	% Identity
FM_1035	blaKPC-2_1	0	100	100
FM_452	vanY-B_1	0	100	100
FM_452	vanS-B_1	0	100	99.6
FM_452	vanH-B_1	0	100	99.4
FM_452	vanR-B_1	0	100	99.2
FM_452	vanA-B_1	0	100	98.9
FM_452	vanW-B_1	0	100	97.6
FM_452	vanX-B_1	0	100	96.7

Mu A, Kwong JC, et al., mSphere 2019


Species ID by 16SrRNA gene reconstruction

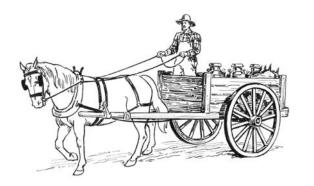
Taxon	Length seq DB (bp) ^d	Length inferred seq (bp) ^e	Nucleotide ID ^f	ldentity (%)
Akkermansia muciniphila	1,434	1,500	1431	99.8
Bacteroides cellulosilyticus	1,193	1,202	1183	99.2
Bacteroides uniformis	1,145	1,145	1143	99.8
Bacteroides uniformis	680	680	676	99.4
Clostridium bolteae	1,309	1,309	1305	99.7
Clostridium glycyrrhizinilyticum	1,268	1,266	1231	97.1
Dialister invisus	1,290	1,302	1287	99.8
Enterococcus faecium	1,344	1,344	1344	100
Eubacterium dolichum	1,484	1,516	1381	93.1
🕨 Klebsiella pneumoniae	1,161	1,161	1161	100
Lactobacillus pentosus	1,468	1,468	1467	99.9
Parabacteroides merdae	1,376	1,376	1376	100
Uncultured bacterium ^a	1,092	1,092	1092	100
Uncultured organism ^b	1,121	1,121	1121	100
Uncultured organism ^c	1,191	1,191	1191	100


More information?


Binning using tetranucleotide frequency profiles

Sample	Scheme	ST
Patient A faeces	K. pneumoniae	258
Individual colony sequencing	K. pneumoniae	258
Patient A faeces	E. faecium	796
	E. faecium	555
Individual colony sequencing	E. faecium	796

Linked patient to KPC transmission cluster 2



Reconstruction of the Genomes of Drug-Resistant Pathogens for Outbreak Investigation through Metagenomic Sequencing

Andre Mu,^{a,b} Jason C. Kwong,^{a,b,c} Nicole S. Isles,^a Anders Gonçalves da Silva,^{a,b} (Description Mark B. Schultz,^{a,b} Susan A. Ballard,^{a,b} Courtney R. Lane,^a Glen P. Carter,^b Deborah A. Williamson,^{a,b} Torsten Seemann,^{b,d} Timothy P. Stinear,^b Benjamin P. Howden^{a,b,c}

"The march of progress is neither straight nor technologically preordained"

Brandon Keim citing Wells and Norton in:

http://nautil.us/issue/7/waste/did-cars-save-our-cities-from-horses

"The march of progress is neither straight nor technologically preordained"

Brandon Keim citing Wells and Norton in:

http://nautil.us/issue/7/waste/did-cars-save-our-cities-from-horses

- DNA extraction (24h)
 - 3 M guanidine HCI, 20% Tween-20
 - Qiagen Genomic-tips
 - Purification with Ampure XP beads
 - Size selection on Bluepippin
- Library prep/sequencing (48h)
 - Ligation Sequencing Kit 1D (SQK-LSK109)
 - Prime and load R9.4 flow cell (FLO-MIN106)
 - Sequencing on MinION

Koen Vandelannoote

- Data analysis (>48h):
 - Guppy-GPU v3.2.4: basecalling on HPC-GPU node (12h)
 - Porechop v0.2.4: Adapters trim, removing hybrid reads (1h)
 - Filtlong v0.2.0: filtering ONT reads
 - Minimap2 v2.17: Removing human reads (30min)
 - Flye v2.6 : De novo assembly (36h)
 - Racon v1.3.2: long read polishing (2 rounds) (1h)
 - Medaka v0.10.0: long read polishing contigs using basecaller "error-profile aware" model (30 min)

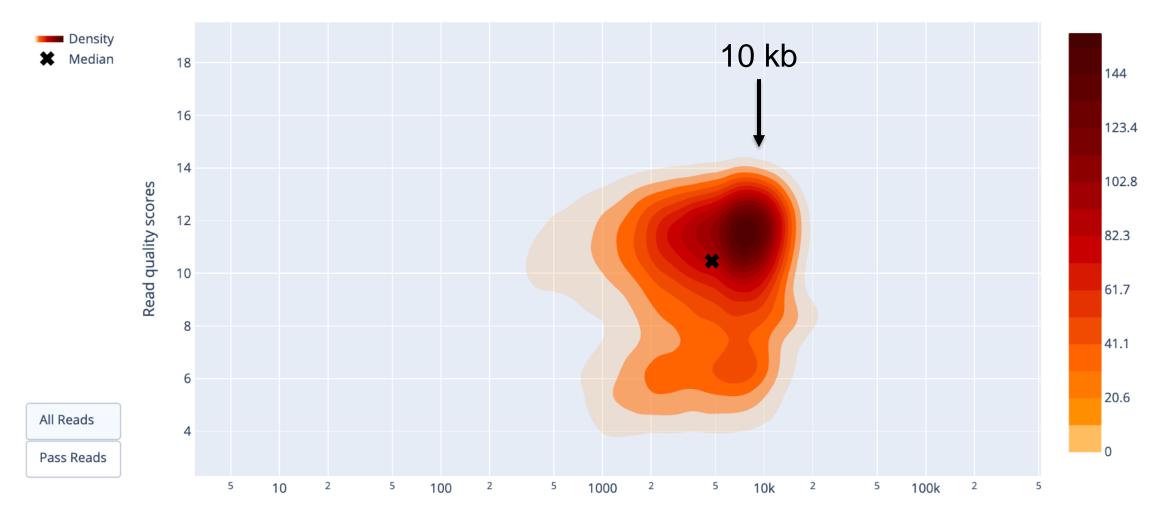
Koen Vandelannoote

Conclusion Part I

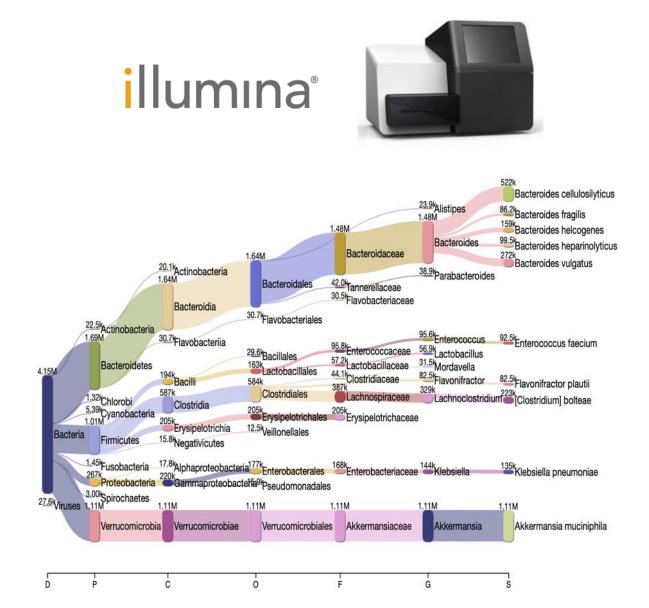
At least 5 days for first results from

receipt of fecal specimen.

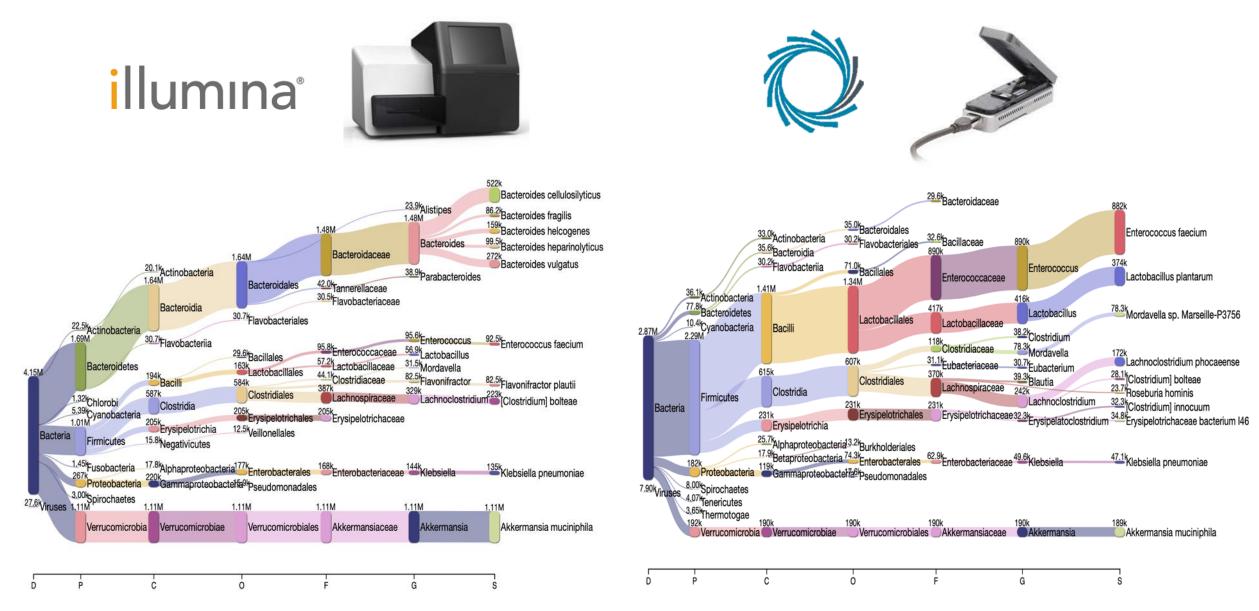
Sequence yield


Illumina: Reads: 22.7M Yield: 6.4 Gbp Q score: 33

ONT: Reads: 4.7M Yield: 31.8 Gbp Q score: 18



Nanopore: Lower quality reads, but looooong

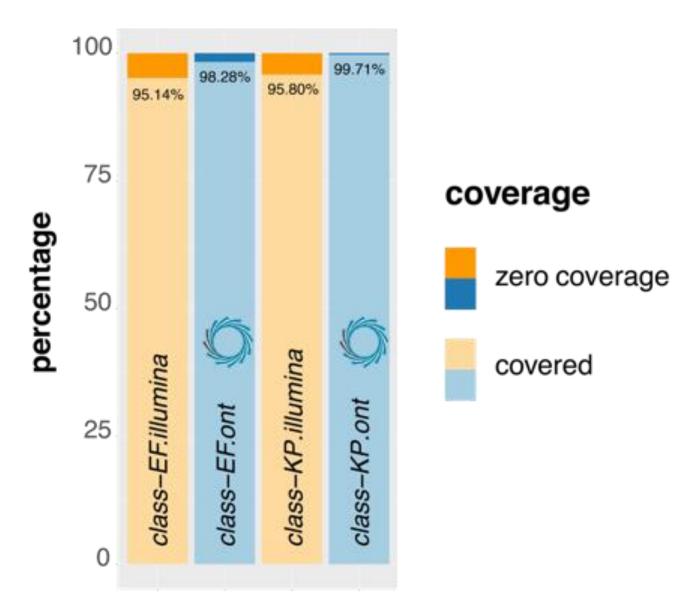


Estimated read length

Breadth of coverage similar, proportions bacteria different

Breadth of coverage similar, proportions bacteria different

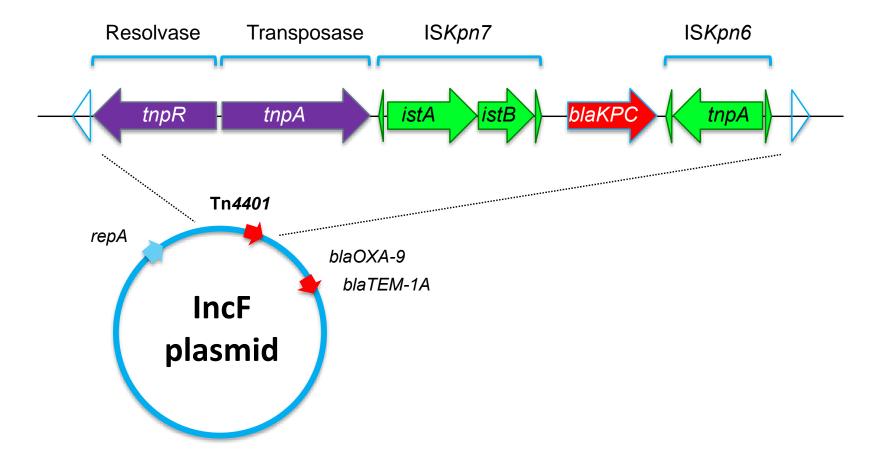
Nanopore provides greater genome coverage



De novo assembly comparisons

Sample	No. contigs	Base pairs	Min length	Avg length	Max length	N50
Illumina	113,623	106,938,398	200	941	203,719	4,750
Nanopore	1,758	87,265,890	257	49,639	5,401,097	96,648

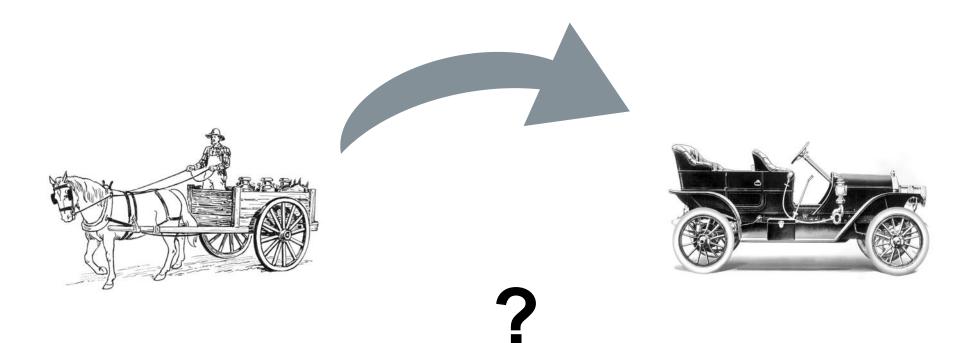
Nanopore provides greater genome coverage


Proportion of reference genome covered by metagenomic reads

Nanopore provides greater genome coverage

Tn4401 – IncF plasmid

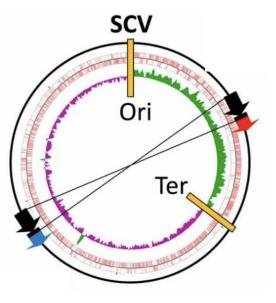
Gene	Resistance	Illumina Coverage %	Illumina Identity %	Nanopore Coverage %	Nanopore Identity %
blaKPC-2	CARBAPENEM	100.00	100.00	100.00	99.77
blaSHV-158	BETA-LACTAM	-	-	100.00	99.88
blaTEM-1	BETA-LACTAM	-	-	20.09	100.00
blaOXA-9	BETA-LACTAM	100.00	99.88	98.67	98.55
aac(6')-lb	AMIKACIN/KANAMYCIN	-	-	100.00	99.28
aph(3')-la	KANAMYCIN	100.00	100.00	99.02	98.30
aadA2	STREPTOMYCIN	83.33	99.39	94.32	94.37
dfrA12	TRIMETHOPRIM	100.00	99.80	97.59	96.79
sul1	SULFONAMIDE	100.00	100.00	99.05	98.33
mph(A)	MACROLIDE	18.78	99.42	99.24	98.27
oqxA	PHENICOL/QUINOLONE	100.00	100.00	100.00	99.58
oqxB	PHENICOL/QUINOLONE	100.00	100.00	99.97	99.59
fosA6	FOSFOMYCIN	100.00	98.81	100.00	98.81
catA1	CHLORAMPHENICOL	-	-	98.64	98.33


Gene	Resistance	Illumina Coverage %	Illumina Identity %	Nanopore Coverage %	Nanopore Identity %
blaKPC-2	CARBAPENEM	100.00	100.00	100.00	99.77
 Nanopore 13/14 genes >90% coverage vs Illumina 8/14 Illumina more often higher percentage nucleotide identity 					
dfr sul1	SULFONAMIDE	100.00	100.00	99.05	98.33
mph(A)	MACROLIDE	18.78	99.42	99.24	98.27
оqхА	PHENICOL/QUINOLONE	100.00	100.00	100.00	99.58
oqxB	PHENICOL/QUINOLONE	100.00	100.00	99.97	99.59
fosA6	FOSFOMYCIN	100.00	98.81	100.00	98.81
catA1	CHLORAMPHENICOL			98.64	98.33

Conclusions Part II

- Need longer, higher quality reads
 - Define sequencing effort required
- Need better DNA extraction methods
- Sequencing costs too high
- Data analysis times too long

S. aureus genotype predicts mortality risk



S. aureus chromosome rearrangement, invasive disease

Unstable chromosome rearrangements in *Staphylococcus aureus* cause phenotype switching associated with persistent infections

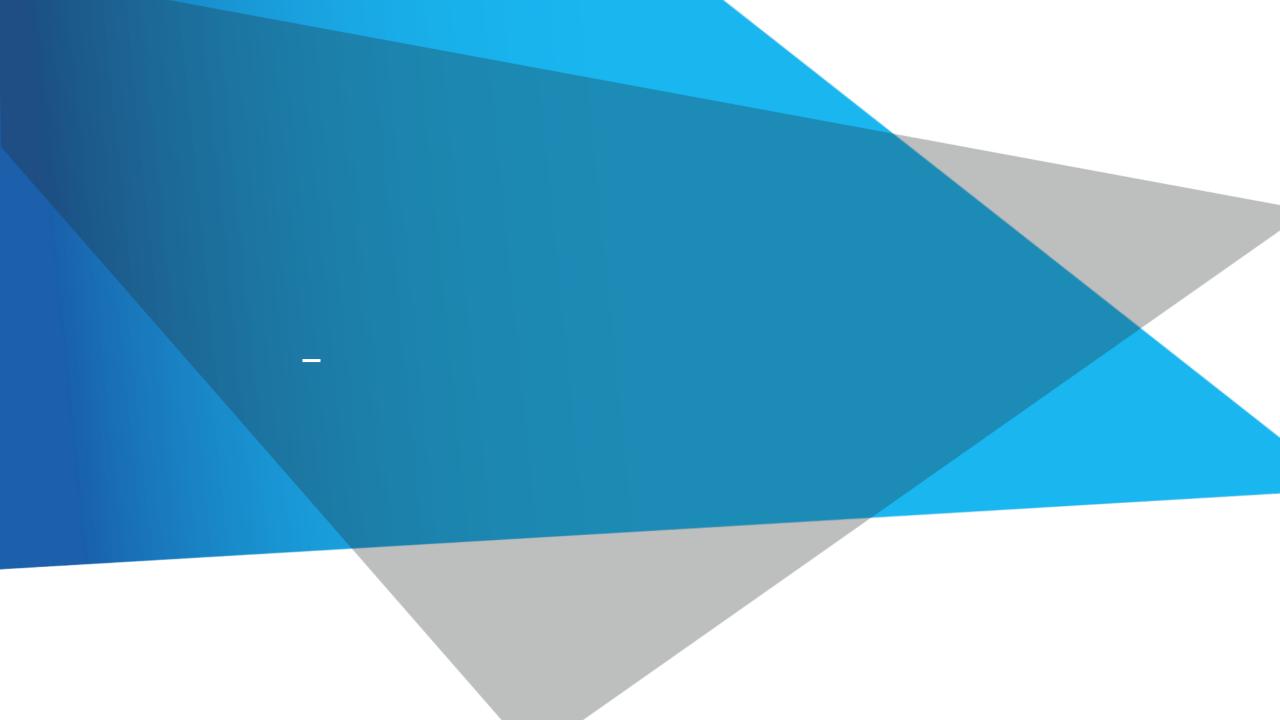
Romain Guérillot^a, Xenia Kostoulias^b, Liam Donovan^a, Lucy Li^a, Glen P. Carter^{a,c}, Abderrahman Hachani^a, Koen Vandelannoote^a, Stefano Giulieri^a, Ian R. Monk^a, Mayu Kunimoto^d, Lora Starrs^d, Gaétan Burgio^d, Torsten Seemann^{c,e}, Anton Y. Peleg^{b,f}, Timothy P. Stinear^{a,c,1}, and Benjamin P. Howden^{a,c,e,g,1,2}

How far to go before metaG is a routine test?

- Rapid, cost-effective diagnosis
- Risk profiling (max diagnostic yield)
 - ARD presence/context
 - pathogen genotype
 - specific chromosome conformations
- Informed treatment

Acknowledgements

THE UNIVERSITY OF MELBOURNE


- MDU PHL: Benjamin Howden, Deborah Williamson, Susan Ballard
- Microbiology and Immunology: <u>Jason Kwong</u>, <u>Andre Mu</u>, <u>Koen Vandelannoote</u>, <u>Nicole Isles</u>, <u>Mark</u>
 <u>Schultz</u>, <u>Sara Zufan</u>, Glen Carter, Andrew Buultjens, Sarah Baines, George Tairoa
- MDU PHL bioinformatics team: <u>Torsten Seemann</u>; <u>Anders Gonçalves Da Silva</u>;
- MDU PHL Enteric Laboratory (Mary Valcanis; Jess Barnden; Nicole Orlando)
- MDU PHL Molecular Unit (Michelle Sait; Takehiro Tomita; Karolina Mercoulia)
- MDU PHL Epidemiology (Janet Strachan; Courtney Lane)
- MDU PHL AMR Unit (Norelle Sherry, Kerrie Stevens)

Back to our imagined scenario

