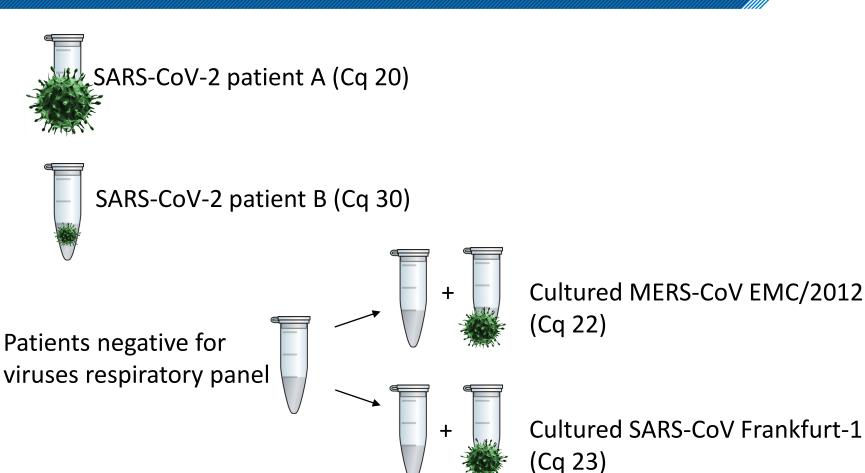


Coronavirus discovery by metagenomic sequencing: a tool for pandemic preparedness

Ellen Carbo
Clinical Microbiological Laboratory
ICCMG 15-10-2020

DOI: <u>10.1016/J.JCV.2020.104594</u>

Pandemic Prepardness


To detect and identify a novel virus as quickly as possible

Metagenomic classifiers use reference indexes with only known viruses Not the unknown ones

In this study we validate the performance of a virus discovery model

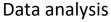
doi: 10.1016/j.jcv.2020.104594

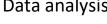
Samples

Methods

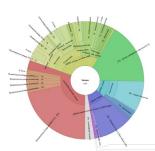
NA extraction - MP96 Roche

Confirm Cq value pathogen by qPCR

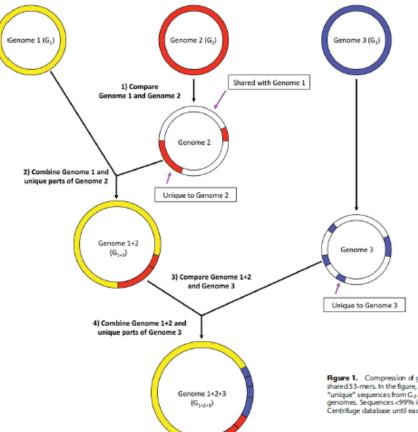

Library Prep - NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina®



(Virocap SegCap EZ HyperCap for SARS-CoV-2 patients)

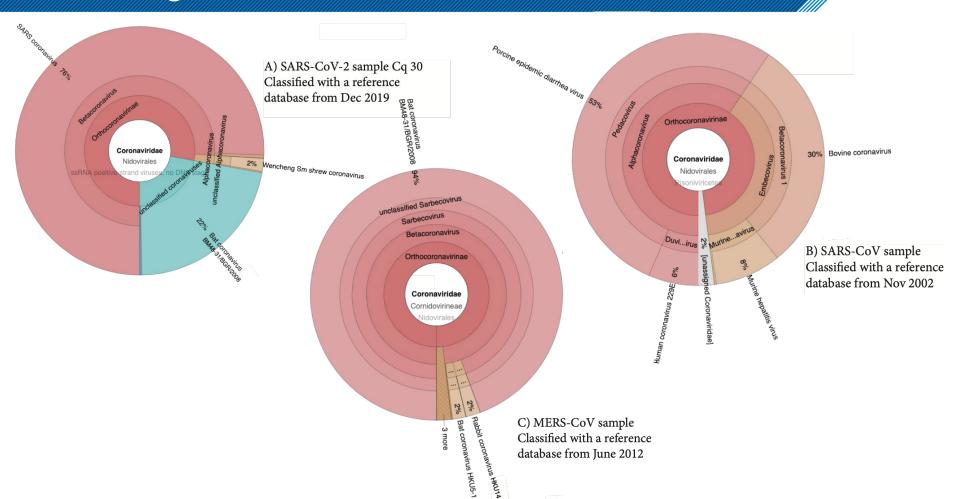


Sequencing – Novaseq Genomescan



- Trimming, fastqc and removal of host reads
- Centrifuge classification tool and Refseq database
- **Genome Detective**
- De novo assembly and blast

Build references



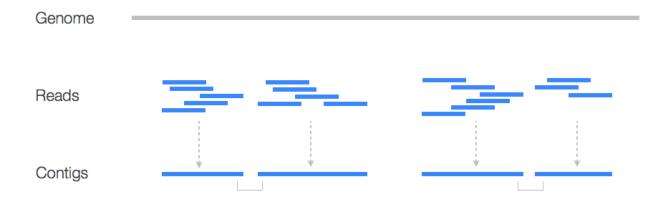
- One of Dec last year
- One with viruses of before SARS-CoV 2002

 One with viruses of before MERS-CoV 2012

Figure 1. Compression of genome sequences before building the Centrifuge index. All genomes are compared and similarities are computed based on shared 53-mers. In the figure, genomes G₁ and G₂ are themost similar pair. Sequences of G₂ that are≥99% identical to G₁ are discarded, and the remaining "unique" sequences from G₂ are added to genome G₁, creating a merged genome, G₁₂. Similarity between all genomes is recomputed using the merged genomes. Sequences <99% identical in genome G₁ are then added to the merged genome, creating genome G₁₂₂. This process repeats for the entire Centrifuge detabase until each merged genome has no sequences ≥99% identical to any other genome.

Centrifuge classification results

Centrifuge classification results (2)


 Table 1

 Classification of SARS-CoV-2, SARS-CoV, and MERS sequence reads using reference databases created before their emergence, using metagenomic classifier Centrifuge.

Sample	Untargeted mNGS, or viral enrichment by capture probes	Total number of non- human reads	Number of reads classified as Coronaviridae (% of total non-human)	${\it Coronaviridae} \ {\it assignment} \ {\it of} > 10\% \ {\it classified}$ ${\it Coronaviridae} \ {\it reads}$		
SARS-CoV-2 Patient A	Untargeted	3,488,842 2,166 (0.06)		SARS-CoV Bat coronavirus BM48-31/BGR/2008		
(Cq 20)	Viral capture ^a	9,582,942	3,518,798 (36.72)	SARS-CoV Bat coronavirus BM48-31/BGR/2008		
SARS-CoV-2 Patient B	Untargeted	919,930	604 (0.07)	SARS-CoV Bat coronavirus BM48-31/BGR/2008		
(Cq 30)	Viral capture ^a	9,894,246	572,061 (5.78)	SARS-CoV Bat coronavirus BM48-31/BGR/2008		
SARS-CoV Frankfurt-1 (Cq 23)	Untargeted	6,936,399	436 (0.006)	Bovine coronavirus Porcine epidemic diarrhea virus		
MERS-CoV EMC/ 2012 (Cq 22)	Untargeted	8,201,535	8,748 (0.1)	Bat coronavirus BM48-31/BGR/2008		

^a Enrichment by capture probes targeting vertebrate viruses designed in 2015

Building contigs

Blast results

Table 2 Classification of SARS-CoV-2, SARS-CoV, and MERS de novo assembled contigs using BLAST.

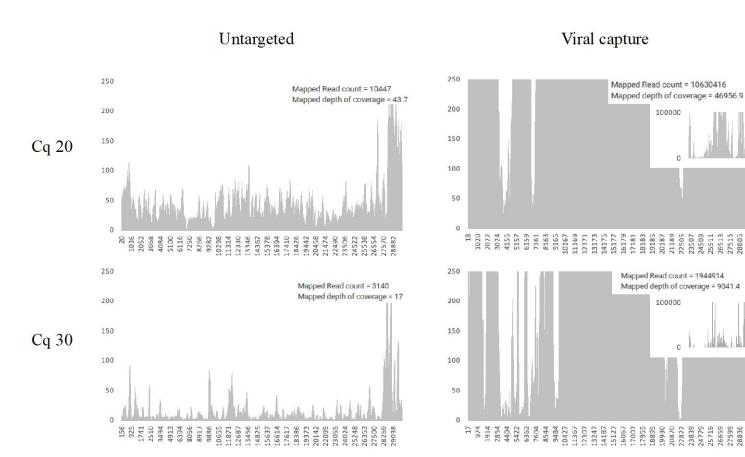
Sample	Untargeted mNGS, or viral enrichment by capture probes	Total contigs ≥ 500bp	Viral contigs ≥ 500bp	$\begin{array}{l} \textit{Coronaviridae} \\ \textit{contig} \geq 500 bp \end{array}$	Length of the longest Coronaviridae contig, bp	BLAST alignment length, bp	BLAST identity match, %	Subject taxonomy name	Release year of sequence of the species	Release year of sequence of the subject found
SARS-CoV-2 Patient A	Untargeted	8,606	15	3	19,654	12,069	87.141	Bat SARS SL CoVZC45	2003	2018
(Cq 20)	Viral capture ^a	8,232	51	31	5,811	5,820	90.567	Bat SARS SL CoVZC45	2003	2018
SARS-CoV-2 Patient B	Untargeted	2,815	31	16	2,503	2,456	91.450	Bat SARS SL CoVZXC21	2003	2018
(Cq 30)	Viral capture ^a	2,110	39	13	4,866	4,856	92.360	Bat SARS SL CoVZC45	2003	2018
SARS-CoV Frankfurt-1 (Cq 23)	Untargeted	3,836	10	1	29,692	1,236	72.411	Bovine coronavirus isolate 4-17-03	2001	2018
MERS-CoV EMC/2012 (Cq 22)	Untargeted	4,074	9	1	30,097	14,856	77.248	Bat coronavirus HKU4-1	2006	2006

Table showing the total number of built contigs with a length > = 500bp, the number of these contigs where the hit with the lowest E-value would be a hit to viruses, the number of contigs where the hit with the lowest E-value would be a hit to Coronaviridae and of this last group the length of the longest contig, the alignment length, identity match, taxonomic name of BLAST result and the release years of sequences belonging to the species and subjects found by BLAST.

^a Enrichment by capture probes targeting vertebrate viruses designed in 2015

Genome Detective Results

A) Untargeted
Patient A (Cq 20)


Patient B (Cq 30)

B) Captured
Patient A (Cq 20)

Patient B (Cq 30)

Number of Contigs	Number of Reads	SARS-CoV Genome Coverage, %	Depth of Coverage	Identity, %		SARS-CoV Genome Alignment
				NT	AA	
3	10,426	98.4	43.7	79.6	83.2	29751
36	3,126	74.2	17	80.7	84.5	1 29751 Σ 10.300
5	10,601,614	97.1	46,956.9	80.2	83.9	29751
12	1,942,472	91.3	9,041.4	80.9	84.9	29751

Untargeted versus captured

Discussion

High and low loads of SARS-CoV-2, SARS-CoV, and MERS-CoV in clinical samples could be detected using our validation model for corona virus discovery:

- > 436 reads are classified the closest relatives of these viruses available at that time
- Clinical metagenomics protocol gave enough reads for contig assembly
- Contigs up to 14,856bp length aligned to the closest relatives of these viruses
- Low 72-92% identity of these consensus genomes with genomes of closely related ones indicated a novel coronavirus

Whole genome of SARS-CoV covered 91-97% using old capture probes

Important: nucleotide identity of over 72% to closest known relative and conclusions cannot be extended to novel viruses which are less closely related

Diagnostic implementation may contribute to increased vigilance for emerging viruses

ACKNOWLEDGEMENT

LUMC:

- Jutte de Vries
- Igor Sidorov
- Louis Kroes
- Eric Snijder
- Jeroen Laros
- Eric Claas
- Jessika Zevenhoven-Dobbe
- Margriet Kraakman
- Vreeswijk
- Lopje Höcker
- Sam Nooij
- Michel Villerius
- Leon Mei

GenomeScan:

David van der Meer

Students

- Joost van Harinxma thoe Slooten
- Alhena Reyes

Genome Detective

- Koen Deforche
- Wim Dumon