

Gut Microbiota and Aging

Hervé M. Blottière

UMR 1280 PhAN, INRAE, Nantes Université, «Physiopathologie des Adaptations Nutritionnelles » & MetaGenoPolis, INRAE Université Paris-Saclay 78350 Jouy en Josas

The human intestinal microbiota

- \checkmark 50 trillions microorganisms ;
- ✓ As many microorganisms as human cells (Sender et al, Cell 2016)
- ✓ Hundreds of different species often <u>not yet cultured</u> (~70% of species);
- ✓ a few dozen species conserved between individuals (core); a stable community.
- A key organ, interacting with food (fermentation,...); interacting with our cells (Immune & nervous systems,...); protecting against pathogens (barrier function);...
- \checkmark A true organ, revealed as playing a role in several diseases
- ✓ Thousands of metabolites/molecules with potential functional interest (Blottière & Doré, médecine/science, 2016)

Faecalibacterium prausnitzii Ruminococcus spp Photos INRA Clostridium difficile From mice cecum Bacteria anchored in a Peyer patch Mouse intestine Bacteroides dorei

Escherichia coli

Mom

adapted from Gonzalez et al. 2011, EMBO reports

Intestinal & immune

Developement of the microbiota microbiota being recognized as an integral part of the whole organism

'unique' symbiosis :

Holobiont

Prevention & Therapy of the Holobiont : evaluation, monitoring and treatment Maintained symbiosis : health and well-being

> Disruption of ecological balance : loss of barrier function & risk of infection

Disruption of tolerance : risk of immune-mediated diseases

INRAØ

Sterile in utero, the intestine is colonized at birth

- colonization is affected by :
 - Mode of delivery (vaginal delivery or caesarean section)
 - Hygiene of neonatal environment
 - Drugs administration (antibiotic, PPI, ...)
 - Maternal nutrition and maternal microbiome
 - Mode of feeding (breast milk versus bottled milk; probiotics)
 - Weaning

INRA

• early colonization, hygiene hypothesis and DOHaD Impact on the microbiota-host symbiosis and therefore on biology and health?

Bach JF. N Engl J Med. 2002; Okada et al, Clin Exp Immunol, 2010

Factors affecting intestine colonization

Tamburini et al., Nat Medicine 2016

Alteration of colonisation by mode of birth

C- section increases the risk of infection and the risk of future pathologies

INRA@

Aquisition of Microbiota : impact of mode of delivery

LETTER

https://doi.org/10.1038/s41586-019-1560-1

Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth

Yan Shao¹, Samuel C. Forster^{1,2,3}, Evdokia Tsaliki⁴, Kevin Vervier¹, Angela Strang⁴, Nandi Simpson⁴, Nitin Kumar¹, Mark D. Stares¹, Alison Rodger⁴, Peter Brocklehurst⁵, Nigel Field⁴* & Trevor D. Lawley¹*

Low richness More pathobionts

Differences in gut microbiota composition still observed at 3 years

INRAO

Shao et al, Nature, 2019

Factors affecting intestine colonization

Tamburini et al., Nat Medicine 2016

Factors affecting intestine colonization : Mother milk vs formula

LETTER

OPEN https://doi.org/10.1038/s41586-018-0617-x

Temporal development of the gut microbiome in early childhood from the TEDDY study

Christopher J. Stewart^{1,2,18}*, Nadim J. Ajami^{1,18}, Jacqueline L. O'Brien¹, Diane S. Hutchinson¹, Daniel P. Smith¹, Matthew C. Wong¹, Matthew C. Ross¹, Richard E. Lloyd¹, HarshaVardhan Doddapaneni³, Ginger A. Metcalf³, Donna Muzny³, Richard A. Gibbs³, Tommi Vatanen⁴, Curtis Huttenhower⁴, Ramnik J. Xavier⁴, Marian Rewers⁵, William Hagopian⁶, Jorma Toppari^{7,8}, Anette-G. Ziegler^{9,10,11}, Jin-Xiong She¹², Beena Akolkar¹³, Ake Lernmark¹⁴, Heikki Hyoty^{15,16}, Kendra Vehik¹⁷, Jeffrey P. Krischer¹⁷ & Joseph F. Petrosino¹*

The contribution of breast milk, exclusive or partial, is the most important factor.

Breastfeeding = increased abundance of Bifidobacterium (B. breve and B. bifidum)

Importance of HMO and milk microbiota

Discontinuation of breast milk leads to rapid maturation of the intestinal microbiome, increase in Firmicutes

Stewart et al, Nature, 2018

Schwartz et al, Genome Biol. 2012

INRA

Factors affecting intestine colonization

Tamburini et al., Nat Medicine 2016

Factors affecting intestine colonization : Impact of Antibiotics

Clinical consequences

Antibiotics alter the colonization process for at least 2 years

Zeissig, Nature Immunol, 2014

INRAe

After weaning, importance of dietary habits

European children Lots of de calories, few fibres

Different dietary habits results in different gut microbiota

Evolution of intestinal microbiota through aging

INRAO

Yatsunenko et al, Nature 2012

What is symbiosis ? Can we define IT ?

Population-level analysis of gut microbiome variation

Global human Gut Microbiome

Schoaie et al, preprint, 2021

INRAe

1106 Belgium Flemish individuals 16 S sequencing (V4)

Medication explain 10 % of gut microbiota variation followed by blood parameters, bowel habits, health status, anthropometric features, and lifestyle.

Falony et al, Science, 2016

What is symbiosis ? Can we define IT ?

Population-level analysis of gut microbiome variation

Global human Gut Microbiome

Schoaie et al, preprint, 2021

INRAe

Age is also an important factor to consider

Ghosh et al, eLife, 2020

Introducing Enterotypes

All individuals studied today (n>1000) are clustered in 3 « Entérotypes », each characterized by an ecological context dominated by Bacteroides, Prevotella, Ruminococcus/Methanobrevibacter

ARTICLE

doi:10.1038/nature09944

Enterotypes of the human gut microbiome

Manimozhiyan Arumugam¹*, Jeroen Raes^{1,2}*, Eric Pelletier^{3,4,5}, Denis Le Paslier^{3,4,5}, Takuji Yamada¹, Daniel R. Mende¹, Gabriel R. Fernandes^{1,6}, Julien Tap^{1,7}, Thomas Bruls^{3,4,5}, Jean-Michel Batto⁷, Marcelo Bertalan⁸, Natalia Borruel⁹, Francesc Casellas⁹, Leyden Fernandez¹⁰, Laurent Gautier⁸, Torben Hansen^{11,12}, Masahira Hattori¹³, Tetsuya Hayashi¹⁴, Michiel Kleerebezem¹⁵, Ken Kurokawa¹⁶, Marion Leclerc⁷, Florence Levenez⁷, Chaysavanh Manichanh⁹, H. Bjørn Nielsen⁸, Trine Nielsen¹¹, Nicolas Pons⁷, Julie Poulain³, Junjie Ojn¹⁷, Thomas Sicheritz-Ponten^{8,18}, Sebastian Tims¹⁵, David Torrent^{10,19}, Edgardo Ugarte³, Erwin G. Zoetendal¹⁵, Jun Wang^{17,20}, Francisco Guarner⁹, Oluf Pedersen^{11,22,23}, Willem M. de Vos^{15,24}, Søren Brunak⁸, Joel Dore⁷, MetaHIT Consortium⁴, Jean Weissenbach^{3,4,5}, S. Dusko Ehrlich⁷ & Peer Bork^{1,25}

Ecology underlying enterotypes should be better understood

Arumugam et al, Nature 2011

Enterotypes

medicine

INRA@

LETTERS https://doi.org/1<u>0.1038/s41591-018-0160-1</u>

Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography

Mélanie Deschasaux ⁽⁾*, Kristien E. Bouter², Andrei Prodan², Evgeni Levin², Albert K. Groen², Hilde Herrema², Valentina Tremaroli³, Guido J. Bakker⁴, Ilias Attaye⁴, Sara-Joan Pinto-Sietsma¹⁴, Daniel H. van Raalte², Marieke B. Snijder^{1,5}, Mary Nicolaou⁵, Ron Peters⁶, Aeilko H. Zwinderman¹, Fredrik Bäckhed^{3,7} and Max Nieuwdorp^{2,3,4*}

Ethnicity explain the interindividual dissimilarities in gut microbiota composition, with three main poles primarily characterized by *Prevotella* (Moroccans, Turks, Ghanaians), *Bacteroides* (African Surinamese, South-Asian Surinamese), and *Clostridiales* (Dutch).

2084 individuals Helius study 16 S sequencing (V2)

Despite sharing the same environment for a long period, our participants showed ethnic-specific gut microbiota profiles, probably reflecting the composition they acquired before migration (94% arrived in adulthood)

Deschasaux et al, Nat Med, 2018

What is symbiosis ? Can we define IT ?

US Immigration Westernizes the Human Gut Microbiome

550 Thai individuals 16 S sequencing (V4) + shotgun

INRAØ

Vangay et al, Cell, 2018

Human gut microbiomes differ on gene (and species) richness

INRA

LGC ≈15 % of lean individuals

≈ 40% Overweightmoderate obese

≈ 75% Morbid obese before bypass surgery

58 « species » significantly linked to gene count

Le Chatelier, et al, Nature 2013; Cottillard et al, Nature, 2013

Age-related changes in gut microbiota composition from newborn to centenarian

367 healthy Japanese subjects 0 and 104 y.o.

INRA© Odamaki et al, BMC Microbiol, 2016

Evolution of intestinal microbiota through aging

Eldermet

187 fecal samples from elderly subjects

9 fecal samples from adults

Bacteroidetes Firmicutes Proteobacteria Actinobacteria Verrucomicrobia Lentisphaerae Fusobacteria

INRAO

Claesson et al, PNAS USA, 2011

Individual age-related changes and the gut microbiome

- Christensenettace
- Odoribacter
- Butyricimonas
- Butyrivibrio
- Barnesiella
- Oscillospira

Ghosh, Shanahan & O'Toole. Nat Rev Gastro, 2022

INRA@

Sardinian Centenarians

Depletion of Faecalibacterium prausnitzii and Eubacterium rectale and enriched for Methanobrevibacter smithii and Bifidobacterium adolescentis in Sardanian Centenarians.

С

3

(2.8%)

15

(14.2%)

Е

8

(7.5%)

(4.7%)

62

(58.5%)

8

Y

(7.5%)

5

(4.7%)

Microbiota analysis separates elderly subjects based upon where they live in the community

Eldermet

Subject colour coding: Green: community; Yellow: day hospital; Orange: rehabilitation; Red: long-stay;

Purple: young healthy controls

191 fecal samples from elderly subjects

Loss of diversity in the core microbiota is

associated with increased frailty

Claesson et al, Nature, 2012

Transition in microbiota composition across residence location is mirrored by changes in health indices.

Difference in Microbiome between healthy and unhealthy ageing

Loss of diversity in unhealthy people

INRAe

Increased Firmicutes & Actinobacteria and less

Bacteroidetes in UnHealthy long-living

Zhang et al, Gene, 2021

Individual age-related changes and the gut microbiome

Group 1

- Faecalibacterium
- Roseburia
- Coprococcus
- Eubacterium rectale
- Bifidobacterium

INRAe

Prevotella

Group 3

- Akkermansia
- Christensenellaceae
- Odoribacter
- Butyricimonas
- Butyrivibrio
- Barnesiella
- Oscillospira

- Desulfovibrio
- Campylobacter
- Atopobiaceae
- Veillonella
- Enterococcus
- Enterobacteriaceae

Ghosh, Shanahan & O'Toole, Nat Rev Gastro, 2022

Microorganism-host signalling as a contributor to healthy or unhealthy ageing

Ghosh, Shanahan & O'Toole. Nat Rev Gastro, 2022

INRAe

Physiological, social and disease-related influences on the microbiome of older people

INRAØ

Ghosh, Shanahan & O'Toole. Nat Rev Gastro, 2022

Metabolites associated with major microbiome gain/loss groups and ageing- associated conditions Taxon groups Metabolites Linked disorder Association

Refs Cardiovascular 175-177 Group 2 Trimethylamine Putatively disorders (unhealthy causative ageing-**Cognitive disorders** 178,179 associated pathobionts) 180 Inflammation, oxidative stress 180 Osteoporosis Colorectal cancer 181 Chronic kidney disease 182 Para-cresol 183 Inflammation, oxidative stress 184 **Cognitive disorders** Chronic kidney disease 182 **Cognitive disorders** 185 Deoxycholic acid and lithocholic Colorectal cancer 186,187 acid 188 Lipopolysaccharide Metabolic syndrome Inflammation, oxidative stress **DNA-damaging** Colorectal cancer 71-73 toxins 77,78 Group 1 and **Cognitive disorders** Preventive Butyrate Group 3 75,79 Insulin resistance (commensals associated 189,190 Obesity with younger 191 Inflammation, impaired age groups barrier function and healthy ageing) 192 Insulin resistance Acetate

INRAO

Ghosh, et al, Nat Rev Gastro, 2022

Fecal microbiota transfer reverses hallmarks of aging

Serum, LPS-binding protein

INRAØ

Parker et al, Microbiome, 2022

Ensemble faisons avancer la science du microbiote

«Le » French Gut project

INRA

Part of the Million Microbiome of Humans Project (MMHP)

National citizen contribution to microbiome science with the ambition of defining the heterogeneity of healthy gut microbiomes within the French population, the environmental and lifestyle factors impacting them, as well as their deviations seen in chronic diseases MGP participates to MMHP by bringing 100,000 French gut metagenomes

Le French Gut (100,000 gut metagenomes) INRAE is the project lead Consortium INRAE with public (APHP,INSERM) and private institutions

