Strain Aware Metagenome Assembly from Short Reads with StrainXpress

Alexander Schönhuth Bielefeld University

ICCMG, Geneva November 16, 2023

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

OVERVIEW

Motivation

- Strains matter
- Overlap Graphs
- Short Reads
- ► Methods
 - Workflow: Divide and Conquer

- Workflow Stages
- ► Results
 - Simulated Data
 - Real Data

Outlook

Motivation I: Strains Matter

STRAIN LEVEL GENOME ASSEMBLY

ADVANTAGES

- Clinically relevant phenotypes vary at strain level
 - E.g. some E.coli strains inflammatory, while ...
 - ... other benefit hosts by producing vitamin K

► However:

- Species level metagenome assembly done deal
- Strain aware metagenome assembly most driving methodological challenge

・ロト (四) (日) (日) (日) (日) (日)

Motivation II: Overlap Graphs

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

CO-OCCURING MUTATIONS

Challenges:

- 1. Connect reads/contigs from the same strain
- 2. Distinguish sequencing errors from low-frequency mutations

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Identification of co-occurring mutations is key

Assembly Graphs

Overlap graphs

nodes: sequencing reads

edges: approximate suffix-prefix overlaps De Bruijn graphs

length k substrings exact overlaps of length k-1

Overlap graphs preserve co-occurrence information

OVERLAP GRAPHS AND METAGENOME ASSEMBLY

Viral Quasispecies: Problem Solved

- ► Contig Assembly: [Baaijens et al., Gen.Res. 2017]
- ► Full-length: [Baaijens et al., Bioinf.2018/RECOMB 2020]

Metagenomes: Prior Work Fragmentary

- ▶ Metagenome read clustering: [Balvert et al., Bioinformatics 2021]
- ▶ Polyploid genomes: [Baaijens et al., Bioinformatics 2019]

Summary and Approach

- ▶ Prior approaches employ DBG's, operate at species level
- ► *Here:* We combine existing work and add missing pieces

Motivation III: Short Reads

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

NEXT GENERATION SEQUENCING

https://microbenotes.com/next-generation-sequencing-ngs/

- Most mature, little operational burden
- ► Low cost, little errors, high coverage easily affordable

Use your short reads - inexpensive high-end technology!

Methods

WORKFLOW

Divide

- Clustering: Read clusters reflect reads from same species
- Local Assembly: Assemble strain-specific contigs in clusters

Conquer

 Global Assembly: Extend contigs across clusters to optimal length

DIVIDE: CLUSTERING

SINGLE LINKAGE CLUSTERING

- Compute overlaps between all reads
- Sort overlaps by overlap score
- Merge reads / clusters using fast hash-based algorithm
- ► Adopted from [Balvert et al., 2021]
- Accelerated by inexpensive algorithmic protocol, instead of machine learning based approach

DIVIDE: LOCAL ASSEMBLY

< □ > < @ > < E > < E > E のQ@

ENUMERATING CLIQUES I

- Construct overlap graph within clusters
- Adopted from [Baaijens et al., 2019]: Here *accelerated* by non-FM index based overlap strategy
- Remove transitive edges to avoid computational explosion later

イロト 不得 とうほ とうせい

3

Dac

ENUMERATING CLIQUES II

- Compute all maximal cliques
 rest because no transitive edges
- Remove errors, keep mutations
 in cliques mutations co-occur, but errors are isolated
- Extend reads in clique into contigs

イロト 不得 とうほ とうせい

 \equiv

Dac

Contigs strain aware because of preservation of strain specific mutation

CONQUER: GLOBAL ASSEMBLY

Standard Procedure:

- Construct overlap graph from cluster contigs
- Remove transitive edges
- Join "branch-less" contigs
- ► Key to Success:
 - Input contigs error-free
 - Input contigs strain-aware

Conquering is straightforward thanks to setup of Divide

ヘロト 人間 トイヨト イヨト

Э

Sac

Results

Data

Simulated Data: Generated with CAMISIM

- ► Low Complexity: 20 strains / 10 species / 20X per strain
- Medium Complexity: 100 strains / 30 species / 20X per strain
- ► High Complexity: 1057 strains / 376 species / 10X per strain
- Spike-in: 10 Salmonella strains mixed into real gut microbiome

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

► Real Data:

- Bmock 12: Mock community, 12 strains / 10 species
- ▶ *NWC*: Natural whey starter culture, 6 strains / 3 species

BENCHMARK EXPERIMENTS

Alternative Approaches (all de Bruijn graph based)

- ▶ IBDA-UD: [Peng et al., 2012]
- GATB-Minia: [Chikhi & Rizk, 2012]
- ▶ MEGAHIT: [Li et al., 2015]]
- SPAdes: [Bankevich et al., 2012]
- ▶ metaSPAdes: [Nurk et al., 2017]

► Metrics (QUAST)

- ► Genome Fraction: Fraction of strain genomes assembled Quantifies strain awareness 🖙 particular attention
- ► *Identity:* Agreement of contigs with true sequence
- ▶ N50 / NGA50: As usual, quantify contiguity
- Misassemblies / Errors: As usual, quantify contig accuracy

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

RESULTS: LOW COMPLEXITY

Assembly	Genome fraction(%)	Identity(%)	Total assembly length	N50	NGA50	Misassembled contigs rate(%)	Error rate(%)
Low complexity data (20X)							
StrainXpress	93.45	99.93	99839190	2584	2955	0.11	0.06
IDBA-UD	62.73	99.91	54982071	9159	2381	0.04	0.09
GATB-Minia	73.33	99.78	67108819	6319	3240	0.25	0.09
MEGAHIT	62.69	99.71	55186304	20395	4356	1.05	0.15
SPAdes	74.74	99.91	58772582	5251	1749	0.09	0.04
metaSPAdes	66.56	99.76	62069880	18991	6723	0.10	0.11

Remarks:

- StrainXpress achieves approximately 20% better Genome Fraction
 StrainXpress (clearly) most strain aware approach
- Contiguity (NGA 50) similar to other approaches
 N50 of MEGAHIT/metaSPAdes offset by small Genome Fraction
 Other contigs are not longer!
- StrainXpress contigs contain little misassemblies and errors

RESULTS: MEDIUM COMPLEXITY

Assembly	Genome fraction(%)	Identity(%)	Total assembly length	N50	NGA50	Misassembled contigs rate(%)	Error rate(%)
Medium complexity data (20X)							
StrainXpress	95.16	99.94	465118278	1685	2173	0.08	0.07
IDBA-UD	62.01	99.81	216415403	5323	1059	0.22	0.08
XC+IDBA-UD	66.02	99.87	243646195	6107	1948	0.27	0.12
GATB-Minia	70.40	99.76	259945654	8324	3107	0.53	0.09
XC+GATB-Minia	70.55	99.77	267643882	8005	3305	0.61	0.11
MEGAHIT	62.77	99.47	225937990	3400	1011	14.16	0.38
XC+MEGAHIT	68.77	99.63	267230659	13454	5384	1.06	0.24
SPAdes	72.18	99.55	246604702	10966	2254	0.44	0.08
XC+SPAdes	59.05	99.63	206345396	4104	761	0.72	0.14
metaSPAdes	63.38	99.81	228257504	19701	4394	0.37	0.14
XC+metaSPAdes	53.99	99.71	195286660	6394	729	0.78	0.24

Remarks:

- Trends from Low Complexity Data re-established
- XC + Method: Run Method as local assembler in our workflow
 Enables faster and (sometimes) more favorable usage of Method

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

RESULTS: HIGH COMPLEXITY

Assembly	Genome fraction(%)	Identity(%)	Total assembly length	N50	NGA50	Misassembled contigs rate(%)	Error rate(%)
High complexity data (10X)							
StrainXpress	84.36	99.88	2278280614	1337	894	0.14	0.22
XC+IDBA-UD	70.18	99.68	2006623170	3540	1219	2.25	0.36
XC+GATB-Minia	68.20	99.78	1747199484	3382	794	1.07	0.25
XC+MEGAHIT	75.63	99.56	2354992154	3358	1686	2.14	0.87
XC+SPAdes	19.23	99.41	367171437	2542	-	3.16	0.64
XC+metaSPAdes	47.21	99.55	708596842	2613	-	1.46	0.45

Remarks:

- Explores limits of StrainXpress
 still superior, but Genome Fraction lower than 90%
- Alternative approaches crash without XC
 XC enables one to run alternative approaches on complex data
- ► Overall: All trends get re-established

RESULTS: COVERAGE

Remarks:

► Genome Fraction of StrainXpress exceeds 90% from 10X and up

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

RESULTS: SPIKE-IN DATA

Remarks:

- ▶ From 15X per Salmonella strain, performance of StrainXpress stabilizes
- StrainXpress outperforms alternative approaches by at least 25%

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

RESULTS: REAL DATA

Assembly	Genome fraction(%)	Identity(%)	Total assembly length	N50	NGA50	Misassembled contigs rate(%)	Error rate(%)
Bmock12							
StrainXpress	99.04	99.93	55332069	60566	65743	0.78	0.018
GATB-Minia	95.31	99.92	49058237	96537	80434	0.47	0.014
SPAdes	95.28	99.98	49055870	189251	171570	0.06	0.012
metaSPAdes	94.55	99.97	48998826	171793	155762	0.13	0.028
IDBA-UD	94.67	99.99	48465926	72765	60987	0.05	0.006
MEGAHIT	93.25	99.87	48637140	120129	105626	2.79	0.027
NWCs							
StrainXpress	75.29	99.47	8858666	1056	636	3.34	0.30
SPAdes	59.37	99.38	6083388	10160	-	2.72	0.08
metaSPAdes	57.96	99.68	5767394	9871	-	1.05	0.05
MEGAHIT	57.81	97.78	6141276	14456	-	12.52	0.16
GATB-Minia	56.78	98.78	5779411	11081	-	4.16	0.05
IDBA-UD	56.44	98.87	5873327	9320	-	3.97	0.07

Remarks:

- Bmock12 is easy, NWC is challenging
- ► By and large, trends from simulated data re-established

RESULTS: REAL DATA

Strains	StrainXpress	s GATB-Minia	SPAdes	IDBA-UD	MEGAHIT
Cohaesibacter sp. ES.047	98.58	97.57	98.07	97.697	97.48
Halomonas sp. HL-4	95.54	69.29	54.39	56.261	39.07
Halomonas sp. HL-93	97.44	85.43	96.00	91.946	91.35
Muricauda sp. ES.050	99.85	99.34	99.50	99.49	99.63
Micromonospora echinofusca	99.87	99.54	99.84	99.382	99.23
Marinobacter sp. LV10R510-8	99.58	98.15	98.81	97.419	97.82
Marinobacter sp. LV10MA510-1	99.44	97.59	98.39	96.698	97.78
Micromonospora echinaurantiaca	99.70	99.34	99.42	99.132	99.37
Psychrobacter sp. LV10R520-6	98.97	97.70	97.93	97.486	97.36
Propionibacteriaceae bacterium	100.00	99.98	99.99	99.948	99.96
Thioclava sp. ES.032	99.55	99.03	99.37	99.202	99.04

Remarks:

StrainXpress only tool to distinguish between very similar strains

Conclusion / Outlook

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

SUMMARY

- StrainXpress only overlap graph based approach available
- StrainXpress outperforms other approaches in strain awareness
- Contigs of all tools of high quality in terms of error content

Do not forget your short reads ... they're high-end, cheap data!

OUTLOOK: HYLIGHT

Assembly	GF(%)	NGA50	Indels/100 kbp	Mismatches/100 kbp	N/100 kbp	MC(%)
3 Salmonella						
MetaPlatanus	72.25	68613	20.56	324.99	2.00	3.15
Unicycler	70.92	-	109.42	1957.53	0.00	6.88
OPERA-MS	68.43	41134	115.57	559.08	0.18	7.69
hybridSPAdes	46.22	-	35.73	816.90	0.00	1.60
HyLight	96.03	351848	0.85	23.56	0.00	0.19
Strainberry						
StrainXpress	90.99	2645	0.7	59.61	0	0.07

Remarks:

- HyLight uses short and long reads (hybrid, lightweight assembler)
- HyLight clearly superior over all extant approaches
- In submission...

Do not forget your short reads - even when long reads are available

REFERENCES

► Paper:

X. Kang, X. Luo, A. Schönhuth StrainXpress: strain aware metagenome assembly from short reads

Nucleic Acids Research, 50(17), e101, 2022

https://doi.org/10.1093/nar/gkac543

► Software:

https://github.com/HaploKit/StrainXpress

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Thanks for your attention!

・ロト・西ト・ヨー シック・